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May 16, 2023

Abstract

We propose a novel measure of the market return tail risk premium based on
minimum-distance state price densities recovered from high-frequency data. The tail
risk premium extracted from intra-day S&P 500 returns predicts the market equity and
variance risk premiums and expected excess returns on a cross section of characteristics-
sorted portfolios. Additionally, we describe the differential role of the quantity of tail
risk, and of the tail premium, in shaping the future distribution of index returns. Our
results are robust to controlling for established measures of variance and tail risk, and
of risk premiums, in the predictive models.

Keywords: Tail Risk, Risk-Neutral Measure, Expected Shortfall, Intra-day Market
Returns, Return Predictability

JEL Code: G12, G13, G17.

∗We would like to thank Rodrigo Hizmeri, seminar participants at the Kellogg School of Management and
conference participants at the 2017 SoFiE Conference in New York, the 2017 Vienna-Copenhagen Conference
on Financial Econometrics, and the 2018 IAAE Meeting in Montreal for useful comments and suggestions.
The second author acknowledges financial support from ANBIMA and FAPERJ. The fourth author thanks
the NSERC, the SSHRC and the FQRSC research grant agencies for their financial support. He is a TSE
associate faculty and a research Fellow of CIRANO and CIREQ.

†Corresponding Author. Email: calmeida@princeton.edu, Department of Economics and Bendheim Cen-
ter for Finance, Princeton University, phone: 609-424-4203.

‡Email: kymmarcel@gmail.com, SPX Capital, Rio de Janeiro, Brazil.
§Email: freire@ese.eur.nl, Erasmus University Rotterdam and Tinbergen Institute.
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1 Introduction

Starting with Bollerslev et al. (2009), extant empirical evidence supports that the variance

risk premium (VRP) helps predict future aggregate market returns.1 This predictability has

been rationalized under different theoretical frameworks.2 Focusing on the properties of

the VRP in a model-free manner, Bollerslev and Todorov (2011) and Bollerslev et al. (2015)

demonstrate how this premium reflects compensation for two different types of risk: diffusive

and jump risk. They show that a large part of the VRP and its predictive power for the equity

premium comes from the compensation demanded by investors for extreme negative events.

Such asymmetric importance of losses relative to gains has strong theoretical foundations,

as in the case of loss aversion (Kahneman and Tversky, 1979) and disappointment aversion

(Gul, 1991; Routledge and Zin, 2010) preferences. These theories posit that agents are

specially averse to downside losses, such that greater compensation (in the form of higher

expected returns) is demanded for assets with high downside risk.3

In this paper, we introduce a new measure of the compensation that investors demand for

bearing systematic downside risk. We use it to shed light on the predictability of aggregate

and cross-sectional risk premiums that is due to aversion to downside risk in a high-frequency

environment. The motivation of our analysis is threefold. First, theory indicates that the

VRP should predict market returns, where most of the VRP arises directly from compen-

sation for downside risk. Second, theory also suggests that investors will demand higher

1The VRP is defined as the difference between the conditional expected variance of market returns over
a given horizon under the physical and risk-neutral measures. It captures the compensation demanded by
investors for bearing variance risk.

2Bollerslev et al. (2009) and Drechsler and Yaron (2011) extend the long-run risk model of Bansal
and Yaron (2004) to make the equity premium a function of time-varying volatility-of-volatility and jump-
intensity, respectively. In both cases, the VRP effectively isolates the relevant latent factor (vol-of-vol or
jump-intensity), justifying its predictive power for market returns. This is because the representative agent’s
aversion to a shock in the latent factor makes the risk-neutral variance higher than the physical one, i.e.,
the VRP increases (in absolute value) with the factor. Alternatively, Bonomo et al. (2015) show that the
predictability afforded by the VRP can be generated by incorporating generalized disappointment aversion
preferences (Routledge and Zin, 2010) in the long-run risk model. See also Bekaert and Engstrom (2017),
who extend the habit formation preferences of Campbell and Cochrane (1999) to show that the VRP can
be interpreted as a proxy for aggregate risk aversion.

3This prediction has been empirically confirmed for the cross-section of stock returns by Ang et al. (2006)
and Farago and Tédongap (2018).
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returns when their perception of downside risk is high. Third, while the predictability litera-

ture focuses on monthly to longer horizons, high-frequency evidence can provide new stylized

facts for economic theories to account for, and to be judged against.4

We compute the daily tail risk premium, denoted as ∆P
QES , as the difference between the

expected shortfall calculated under the risk-neutral (ESQ) and physical (ESP) probability

measures estimated from intra-day S&P 500 return data. The risk-neutralization is based

on a nonparametric adjustment of the raw market returns. Motivated by Ait-Sahalia and

Lo (1998, 2000), the risk adjustment puts a higher probability weight on extreme negative

returns, reflecting investors’ compensation for “bad” states of the world. From an economic

viewpoint, ESQ (ESP) is the expectation under the risk-neutral (physical) measure of the

payoff of a hypothetical out-of-the-money (OTM) put option on the market, which is natu-

rally sensitive to negative jumps in returns. In particular, ESQ − ESP can be expressed as

the expected value of the difference between the put price and its payoff, which allows us to

interpret ∆P
QES as the expected gain of selling the put. Therefore, ∆P

QES will be high when

investors highly value protection against market downside risk (i.e., when they are willing

to pay a high premium relative to the expected put payoff).

We investigate the predictive power of ∆P
QES for risk premiums with a comprehensive set

of empirical tests. We focus our predictive exercises on very short horizons: daily, weekly and

monthly. This directly complements the longer-horizon predictability results documented in

the literature. In the predictive regressions, we control for a number of established variance

and tail risk measures. Among these, three are particularly important: the physical expected

shortfall (ESP), the left tail variance (LTV ) of Bollerslev et al. (2015) and the VRP of

Bollerslev et al. (2009). Including ESP, which is a measure of realized downside risk, allows

us to assess what better predicts risk premiums: the tail risk premium or the quantity of

tail risk itself. LTV , which estimates jump risk from out-of-the-money options, is a natural

benchmark to assess if options contain information beyond that provided by our measure.

4For instance, Bonomo et al. (2015) develop a model to reproduce moments and predictability patterns
of risk and return across different frequencies.
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The VRP is included given its important role as a predictor of the equity premium (Bollerslev

et al., 2009).5 We complement these measures with the realized variance (RV ) of market

returns computed from intra-day data and other measures of realized return variation.

We start with a predictive analysis of excess market returns. We find that our measure

∆P
QES has strong predictive power for 1-day ahead market returns, with a positive coefficient

that is highly statistically significant and a non-negligible R2.6 This provides new high-

frequency evidence that investors require a higher compensation to hold the market when

aversion to downside risk increases. This predictive power is robust to controlling for all

the measures we consider, across different regression specifications. In particular, the only

other predictor that appears as significant is the VRP . We show that the predictability

afforded by ∆P
QES also holds out-of-sample across different starting dates and re-estimation

frequencies. This indicates that the predictive relation between the tail risk premium and

the equity premium is stable and persists under different economic conditions.

We further investigate whether ∆P
QES is able to predict the variance risk premium. Since

the VRP reflects in large part compensation for extreme negative events, we should expect

that the tail risk premium is informative about the future VRP . This is indeed what we find

in the predictive regressions, where ∆P
QES is a highly significant predictor across different

regression specifications and all horizons. In particular, this predictability remains after

including the lagged VRP , which is also highly significant. It is worth noting that the LTV

has no predictive power for the equity and variance risk premiums. This can be rationalized

by the fact that it is computed from options with maturity between 6 and 31 trading days,

which reflect market expectations over relatively long horizons. In contrast, our tail risk

premium measure contains information completely conditional on day t.7

We also analyze the predictive relation between the tail risk premium and 1-day ahead

5We compute a daily version of the VRP that is analogous to the monthly VRP constructed by (Bollerslev
et al., 2009).

6For the 1-week and 1-month ahead horizons, no predictor is significant.
7In Appendix A, we show that, similarly to LTV , our tail risk premium measure captures time-variation

in the risk-neutral and physical tail shape parameters of the market return distribution. However, the two
measures naturally differ in how they are estimated and what data is used.
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excess returns on portfolios comprised of stocks sorted on various characteristics: size, book-

to-market, profitability, investment, momentum, reversal and industry. These portfolios

reflect compensation for risks beyond those related to the market portfolio. Given the

important role of downside risk factors in explaining the cross-section of returns (Ang et al.,

2006; Farago and Tédongap, 2018), ∆P
QES can potentially be useful for predicting cross-

sectional risk premiums at high-frequency. Our results show that the tail premium measure

is able to predict the returns on most of the portfolios with high t-statistics and economically

significant R2s. The same is not true for the other variables we consider. In fact, adding

each of them at a time to the predictive regressions does not affect the predictive power of

∆P
QES . This reinforces the role of aversion to downside risk as captured by our measure as

a fundamental determinant of risk premiums at short horizons.

Our analysis indicates that it is the tail risk premium (∆P
QES ) rather than the level of tail

risk (ESP) that contains relevant predictive information about future market returns.8 In

order to shed light on the differential role of these variables for explaining the equity premium,

we investigate their predictive power for the whole distribution of next-day market returns

by estimating the quantile regression model of Koenker and Gilbert (1978). We find that

an increase in risk (ESP) leads to a larger probability of observing both extreme negative

and positive market returns, whereas an increase in the aversion to downside risk (∆P
QES )

shifts the quantiles around the median and the whole right tail towards more positive values.

That is, a positive shock in expected shortfall means a more volatile market, such that it is

usually followed by either a large decrease or increase of the S&P 500 index. These extreme

effects cancel out when predicting directly the market returns. In contrast, a positive shock

in the tail risk premium signals that investors are more averse to extreme negative outcomes,

requiring a higher compensation to hold the market. This is reflected in the positive effect of

∆P
QES on essentially all quantiles of the market return distribution. Such unambiguous effect

8This result is largely in line with Bollerslev et al. (2009), Bollerslev and Todorov (2011), Bollerslev et al.
(2015) and Andersen et al. (2017), among others, who study the risk-return trade-off concluding that it is
the variance risk premium rather than the quantity of risk that is informative of future risk premiums.
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translates to the significant positive relation between ∆P
QES and future market returns.9

The rest of the paper is organized as follows. Section 1.1 offers a brief review of the related

literature. Section 2 describes how we define and estimate our tail risk premium measure

based on high-frequency market returns. Section 3 presents our empirical predictability

results for risk premiums and quantiles of the S&P 500 excess return distribution. Section

4 contains several robustness tests considering different specifications of our tail premium

measure. Section 5 concludes the paper.

1.1 Related Literature

Our paper is related to the rich and growing literature on the estimation of tail risk and

systematic risk measures and their use to predict the equity and variance risk premiums.

This includes, among others, Bali et al. (2009), Allen et al. (2012), Siriwardane (2013),

Kelly and Jiang (2014), Adrian and Brunnermeier (2016) and Brownlees and Engle (2017).

In particular, Bollerslev et al. (2015) decompose the variance risk premium and examine

the importance of the diffusive and jump components for return predictability. Andersen

et al. (2017) estimate the variation in the left tail of the return distribution from short-

maturity options with significant predictive power for future short-term returns. Andersen

et al. (2020) extend this evidence to international equity markets. Vilkov and Xiao (2013),

Ghysels and Wang (2014) and Huggenberger et al. (2018) use daily index options to model

forward looking tail risk based on Value-at-Risk and expected shortfall measures. In contrast

to these papers, we are the first to provide a methodology to compute the tail risk premium

in high-frequency environments that is applicable to virtually any set of returns.

To estimate the risk-neutral leg of our tail risk premium measure, we build on Almeida

et al. (2017), who compute a nonparametric risk-neutral expected shortfall based on a cross-

section of daily portfolio or security returns.10 In contrast to that paper, we rely solely on

9We then conduct a thorough out-of-sample evaluation of interval forecasts using all of the tests prescribed
by Christoffersen (1998), which confirms that the in-sample predictive power of the estimated quantile model
translates to out-of-sample performance.

10Kelly and Jiang (2014) also use a large cross-section of observed returns to compute a tail risk measure

5

Electronic copy available at: https://ssrn.com/abstract=3211954



returns on a broad market index and we use high-frequency intra-day data to obtain more

information about the tail. Moreover, while in the aforementioned paper the authors propose

the risk-neutral expected shortfall as a new tail risk measure, we concentrate on measuring

the tail risk premium as the difference between expected shortfalls under the risk-neutral

and physical measures.11

Our paper is close in spirit to Weller (2019), who develops a real-time tail risk measure

based on intra-day bid and ask quotes. While Weller (2019) focuses on the natural relation

between tail risk and jumps, providing substantial evidence of jump realization predictability

using intra-day data, we focus on the broader relation between aversion to tail risk and

aggregate and cross-sectional risk premiums. Additionally, Weller (2019)’s measure considers

a panel of 2800 firms for its baseline one-factor model, while our tail measure necessitates

only one day of intra-daily observations on one stock index. In fact, the measure we propose

can be easily applied to different markets and assets for which intra-day returns are available,

avoiding the need to rely on option prices or bid-ask spreads.

Our paper also complements the findings obtained with the use of high-frequency factor

models in Bollerslev et al. (2013), Bollerslev et al. (2016) and Aı̈t-Sahalia et al. (2020).

Bollerslev et al. (2013) use a large high-frequency data set on the cross-section of stock returns

to measure the quantity of tail risk under the physical probability measure. In contrast, we

identify a measure of the high-frequency tail risk premium that captures the wedge between

the risk-neutral and physical worlds. Bollerslev et al. (2016) consider an extension of the

CAPM model with separate betas for the jump component and the continuous component

of the market return. They find that only the jump component beta entails significant

premiums. We offer a new tail risk premium measure that is not dependent on option data

by assuming that asset return tails follow a power law. With particular emphasis on the financial sector,
Allen et al. (2012) and Brownlees and Engle (2017) adopted VaR and expected shortfall measures to estimate
systemic risks. In this literature, the estimated tail risk measures are calculated on a monthly or weekly
basis rather than daily.

11In addition, by focusing on high-frequency individual returns instead of cross-sectional returns, supple-
mentary economic restrictions like the non-negativity of the equity premium can be naturally imposed on
the Euler equations as advocated by Campbell and Thompson (2008) and Pettenuzzo et al. (2014).
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and does not rely on any parametric dynamics for the market return. Aı̈t-Sahalia et al.

(2020) estimate a multi-factor model at high-frequency. They show that a large part of the

market equity premium is due to exposures to the market’s jump risk component and that

jump risks in Fama-French factors supersede their continuous counterparts. The predictive

power of our tail risk premium for the expected returns of the characteristic-based portfolios

is consistent with their findings.

2 The Nonparametric Tail Risk Premium

2.1 Background

Let (Ω,F,P) be a probability space (with P the physical probability measure), where R

and RF are random variables denoting, respectively, the return of a primitive basis asset

(the stock index), and a risk-free rate. An admissible risk-neutral distribution (RND) Q is

represented by a density q, a non-negative random variable with unitary mean satisfying the

Euler pricing equation for the index returns:12

EQ[R−RF ] ≡ EP[q(R−RF )] = 0, (1)

with EP[q] = 1, q ≥ 0.

At each day t, we observe a sample {Rt
i}i=1,...,T of high-frequency stock index returns (T > 1).

We use this high-frequency time-series to identify a conditional RND Qt via its density qt

and the empirical conditional physical distribution Pt, with density pti = 1
T
, i = 1, ..., T , for

all t.13

12A RND is a probability distribution Q equivalent to the physical distribution P, under which the basis
assets are correctly priced, i.e, it satisfies the Euler equation. It can be represented one-to-one with its
corresponding density q. In the paper, we use these two definitions interchangeably.

13We assume stationarity and ergodicity of the composite process (qti , R
t
i){i=1,...T}, such that it satisfies

a time-series version of the law of large numbers (Hansen and Richard, 1987).
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2.2 Definition

Our objective is to build a simple tail risk premium measure that depends solely on

the returns of the single stock index observed at a high frequency. To that end, for each

date t, we estimate daily expected shortfalls under the conditional physical and risk-neutral

measures:

ESPt
t := EPt [(sα −R)+], (2)

ESQt
t := EQt [(sα −R)+]. (3)

In the equation above, t is the estimation date, α is a confidence level, sα is the α-quantile

of R under the physical probability, and Pt and Qt indicate the physical and risk-neutral

conditional probability densities at time t, respectively. We adopt ES to measure risk since it

is a coherent measure of risk (Artzner et al., 1999), which overcomes the main deficiencies of

the Value-at-Risk (VaR) measure. In particular, while VaR completely ignores the behavior

of returns in the tail beyond its confidence level, ES takes an average of these tail returns,

being thus highly sensitive to what happens in the tail.14

Note that we use a version of ES that can also be interpreted as the expectation of the

payoff (sα−R)+ of a put option with strike sα. ESQt
t is then the option price computed under

the risk-neutral distribution incorporating investors’ preferences. The put payoff is positive

in the states of nature where R < sα, which for α < 0.5, at least for symmetric distributions,

occurs for returns R smaller than the risk-free rate RF , i.e., negative excess returns. The

smaller the α, the more negative the sα and the farther we are in the left tail of R. To

strike a good balance between capturing behavior in the left tail and guaranteeing enough

return observations to extract information from, we set α = 0.2.15 This essentially means

that (sα−R)+ is the payoff of an OTM put option, whose price ESQt
t reflects how protection

against downside risk (the risk of large negative returns below sα) is valued according to Qt.

14See Berkowitz and O’Brien (2002) and Jorion (2019) for examples in which VaR leads to overestimation
of risks in calm periods, and underestimation during crises.

15In Section 4.3, we show that our results are very similar if we define α to be 0.1 instead.
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We define our tail risk premium measure as the difference between the expected shortfalls

under the risk-neutral and physical distributions:

∆P
QESt = ESQt

t − ESPt
t . (4)

Given a positive equity premium, negative market return states in which the OTM put pays

off are deemed more likely to happen under Qt than under Pt due to risk aversion. By

keeping the same threshold sα for the two ES ’s, the tail risk premium depends only on how

investors’ preferences encoded in risk-neutral probabilities make ESQt
t exceed its physical

counterpart ESPt
t . In particular, ∆P

QESt can be interpreted as the expected gain of selling

the put option by noting that ESQt
t −ESPt

t = EPt [EQt [(sα−R)+]−(sα−R)+] is the expected

value of the difference between the put price and its payoff. Therefore, ∆P
QESt is expected

to be high when investors highly value protection against market downside risk (i.e., when

they are willing to pay a high premium relative to the expected put payoff).16

In our empirical application, we compute ∆P
QESt at a daily frequency using the intra-day

stock index returns. Since there is no overlapping of data when calculating our measure,

it avoids spurious persistence and is able to quickly react to the arrival of new information

embedded in market returns. At this point, our main challenge lies in finding a way of iden-

tifying the conditional risk-neutral probability distribution Qt without using options in the

estimation process. Following Almeida et al. (2017), who compute risk-neutral probability

distributions from a cross-section of portfolio returns, we obtain Qt at each date t by solving

a specific minimum distance problem between the conditional physical probability distribu-

tion Pt and the family of risk neutral distributions that correctly price the S&P 500 returns

{Rt
i}i=1,...T within day t. The details of this procedure are developed in the next subsection.

16In Appendix A, we also show that our tail premium measure captures time-variation in the risk-neutral
and physical tail shape parameters of the market return distribution.
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2.3 Identifying Conditional Risk-Neutral Densities from S&P 500

Returns

We work with a sequence of repeated one-period models indexed by time t, characterized

by the high-frequency returns {Rt
i}i=1,...,T sampled at t.17 Since T > 1, the market within

each of these models is inherently incomplete and, under the assumption of no-arbitrage,

there exists an infinity of RNDs pricing the index returns at each date t. Almeida and

Garcia (2017) suggest identifying a subset of RNDs by minimizing functions in the Cressie-

Read family of discrepancies ϕγ(π) = πγ+1−1
γ(γ+1)

, γ ∈ R, that measure the distance between

admissible RNDs Q with density q and the physical probability distribution P with density

p. Each discrepancy ϕγ(π) allows for the identification of a specific RND q̂γ with unique

sensitivity to higher-order moments of the stock index returns.18

The minimum-discrepancy (MD) problem, which was originally proposed by Almeida

and Garcia (2017) for SDFs and later adapted by Almeida and Freire (2022) for RNDs, can

be stated in its sample version for a single basis asset as follows:

q̂γ = arg min
{q1,...,qT }

T∑
i=1

piϕ
γ

(
qi
pi

)

subject to
T∑
i=1

qi(R
t
i −RF ) = 0

T∑
i=1

qi = 1

qi ≥ 0 (or qi > 0) ∀ i,

(5)

where the last inequality depends on the discrepancy ϕγ(.) chosen to measure the distance

between the RND q and the physical density p: if γ > 0, then q ≥ 0, otherwise q > 0. We

consider homogeneous empirical probabilities pi = 1
T
, i = 1, 2, ..., T , to represent the physical

17We often omit the time t dependence for ease of notation.
18The original analysis in Almeida and Garcia (2017) is performed in terms of Stochastic Discount Factors

(SDFs). Almeida and Freire (2022) adapt it in details to consider RNDs instead. Most of the technical details
following below were originally derived in these two papers.
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distribution, for all dates t.19 This allows us to exchange the expectation EP with its sample

counterpart 1
T

∑T
i=1 ≡

∑T
i=1 pi.

The MD problem (5) is computationally simpler and faster to solve in its dual formulation:

λ̂γ = arg sup
θ∈R, λ∈Λ

θ +
T∑
i=1

piϕ
∗,γ(θ + λ(Rt

i −RF )), (6)

where Λ ⊆ R and ϕ∗,γ denotes the convex conjugate of ϕγ, restricted to a subset of the

non-negative real line:

ϕ∗,γ(z) = sup
w∈[0,∞)∩domain ϕγ

zw − ϕ(w). (7)

In this dual problem, θ and λ are Lagrange multipliers arising from the restrictions defining

an admissible RND in (5). The multiplier θ determining that q sums to one (i.e., that

q is a discrete probability distribution) can be concentrated out of the problem. On the

other hand, the multiplier λ enforcing the Euler equation for the returns is the main one

completely characterizing the RND. More specifically, for γ < 0, we can solve the following

dual optimization problem to obtain λ:

λ̂γ = arg sup
λ∈Λ

−
T∑
i=1

pi
1

(γ + 1)

(
1 + γλ

(
Rt

i −RF

)) γ+1
γ , (8)

where q can be recovered from the first-order condition of (8) with respect to λ:

q̂γi =

(
1 + γλ̂γ (Rt

i −RF )
) 1

γ

∑T
i=1 pi

(
1 + γλ̂γ (Rt

i −RF )
) 1

γ

. (9)

For each γ, the resulting MD RND is different. To help illustrate how q̂γ depends on γ,

19For a set of empirically observed returns {Rt
i}i=1,...T , where each Rt

i is independent and identically
distributed according to P, pi = 1

T is an optimal nonparametric estimator for the physical density p (or,

equivalently, the empirical measure PT = 1
T

∑T
i=1 δRt

i
is an optimal nonparametric estimator for P, where

δRt
i
denotes a unit mass at Rt

i). See Kitamura (2006) for more details. This essentially amounts to using
the histogram of returns as the empirical physical measure. Alternatively, one could use a kernel density
estimator to smooth the histogram and obtain the physical probabilities. This would again amount to setting
p′i =

1
T ′ but for T

′ returns drawn from the estimated kernel density, which does not bring any further insights.
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we replicate the Taylor expansion of the expected value of the discrepancy ϕ(π) = πγ+1−1
γ(γ+1)

around 1 executed in Almeida and Freire (2022):

E(ϕγ(π)) =
1

2
E(π − 1)2 +

γ − 1

3!
E(π − 1)3 +

(γ − 1)(γ − 2)

4!
E(π − 1)4 + ... (10)

As can be seen, minimizing the expected value of a given discrepancy amounts to mini-

mizing a particular combination of higher-order moments of the RND determined by γ. In

particular, for γ < 1, the weight given by the discrepancy to the skewness of the RND is

negative, such that skewness is maximized, while the weight assigned to kurtosis is positive,

such that kurtosis is minimized. This is consistent with a “preference” for positive skewness

and “aversion” to kurtosis of stock index returns, characteristics which are in line with the

findings of Kraus and Litzenberger (1976) and Backus et al. (2011). The lower the γ, the

higher is the relative importance of skewness and kurtosis in the estimation of the RND.

Since Cressie Read discrepancies indexed by negative γs have higher sensitivity to higher

moments of basis assets returns, they constitute an adequate choice for our goal of identifying

an RND to calculate the tail risk premium. Almeida et al. (2017) work with the Hellinger

discrepancy (γ = −1
2
) to identify the RND from a cross-section of stock returns, due to the

robustness of this estimator reported in former econometric studies. We choose instead to

conduct our baseline analysis using the γ = −3 estimator since it is more sensitive to the

skewness and the kurtosis of returns.20 In Section 4.1, we show that our results are robust

to using the γ = −1
2

estimator.

In the next subsection, we associate the dual problem (8) to an optimal portfolio problem

where a marginal investor in the S&P 500 market selects portfolio weights on the risk-free

rate and the risky asset. This provides further interpretation to our approach.

20Even though γ can in principle attain values in the whole real line, Almeida and Freire (2022) show that
the constrained optimization in the dual problem may not have a solution for extreme negative γs (usually
below −5). To guarantee an admissible RND with high sensitivity to downside risk for which a solution
exists, we choose to work with γ = −3.
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2.4 Portfolio Interpretation

Consider a standard optimal portfolio problem for an investor with utility function within

the hyperbolic absolute risk aversion (HARA) class:

uγ(W ) = − 1

γ + 1
(b− aγW )

γ+1
γ , (11)

where a > 0 and b − aγW > 0, which guarantees that the function uγ is well-defined,

concave and strictly increasing. The investor chooses how to allocate initial wealth W0 by

investing λ̃ units of wealth on the risky asset R and the remaining W0− λ̃ in a risk-free asset

paying RF . The optimal allocation is such that the expected utility of end-of-period wealth

W (λ̃) = W0RF + λ̃(R−RF ) is maximized:

λ̃γ = max
λ̃∈R

E
[
uγ(W (λ̃))

]
. (12)

Almeida and Freire (2022) show that there is a one-to-one mapping between problem (12)

and the population version of (8) for a given γ. This can be easily seen via the first-order

condition of (12):

E
{

(R−RF )
[
b− aγ(W0Rf + λ̃γ(R−RF ))

] 1
γ

}
= 0

⇐⇒ E
{

(R−RF )
[
(b− aγW0Rf )(1 + γλ̂γ(R−RF ))

] 1
γ

}
= 0

⇐⇒ (b− aγW0Rf )
1
γE

{
(R−RF )(1 + γλ̂γ(R−RF ))

1
γ

}
= 0

⇐⇒ E
{

(R−RF )(1 + γλ̂γ(R−RF ))
1
γ

}
= 0,

(13)

where λ̂γ = −λ̃γa/(b−aγW0Rf ). The above shows that the RND q̂γ in (9) is proportional to

the marginal utility of the HARA investor with concavity parameter γ, and that the optimal

Lagrange multiplier λ̂γ is proportional (with opposite sign) to the optimal portfolio weight

λ̃γ in the risky asset.
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Provided that the equity premium is positive, i.e., E(R−RF ) > 0, the optimal portfolio

solution will contemplate buying a certain amount of the stock index (that is, λ̃γ > 0). In

such case, the Lagrange multiplier λ̂γ is negative and the RND q̂γ will distort the original

physical distribution p by putting higher (lower) probability mass to any state of negative

(positive) index excess return. Intuitively, the marginal utility of the HARA investor is high

(low) for negative (positive) realizations of the optimal portfolio due to risk aversion. Since

negative return states are the ones that matter for the expected shortfall, this means that

the risk-neutral leg of our tail risk premium measure, ESQ, is greater than the corresponding

physical leg, ESP, implying that ∆P
QESt ≥ 0.

In practice, on a given day t, it may happen that the sample average of the high-frequency

excess market returns is negative. This would imply that the HARA investor short-sells the

stock index and has low marginal utility for negative market return states, such that ESQ

would be actually below ESP. Arguably, this is not economically sound, as the marginal

investor selling the market would be inconsistent with a representative agent equilibrium

model. In fact, the average intra-day return on day t is a noisy estimate of the conditional

equity premium, which is often considered to be non-negative (Campbell and Thompson,

2008; Martin, 2017). Therefore, in our baseline analysis, we restrict the equity premium to be

non-negative, which guarantees that our tail risk premium will be a non-negative measure.21

In Section 4.2, we consider the unrestricted case for robustness and show that this restriction

has no material impact on our empirical results.

3 Empirical Analysis

Our empirical analysis of the predictability of risk premiums associated with the U.S.

aggregate market, identified by the S&P 500 index, is composed of three parts. The first

21That is, for each day t, if the average of the intra-day excess market returns {Rt
i}i=1,...,T is negative,

we shift the mean of the return distribution to zero by transforming returns to R̃t
i = Rt

i − 1
T

∑T
i=1 R

t
i. Note

that this transformation does not affect the higher (centered) moments of the return distribution.
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part focuses on the predictive power of our tail risk premium (∆P
QES ) and tail risk realiza-

tion (ESP) measures for the equity premium and the variance risk premium. In part two,

we extend the study to the cross-sectional predictive ability of our measures. The third

part examines the broader implications for the predictability of different quantiles of the

distribution of excess market returns.

3.1 Data Description

Our dataset is compiled from a number of data sources and covers the period from January

2004 to December 2018. First, we obtain high-frequency data on the S&P 500 index from

www.tickdata.com, and down-sample it to the five-minute frequency by registering the last

observation in each five-minute window. This data is used not only to estimate ∆P
QES and

ESP, but also a number of high-frequency return variation measures, such as realized variance

(RV ), integrated quadratic variation (IV ) and jump quadratic variation (JV ).22 Data on

the VIX index is obtained from the CBOE via WRDS, whereas the data on daily close-to-

close S&P 500 returns, inclusive of dividends, is obtained from CRSP. Similarly to Bollerslev

et al. (2009), we define the variance risk premium as the RV minus the VIX squared. The

risk-free rate and data on the cross-sectional stock portfolios is obtained from the Kenneth

French Data Library.23 High-frequency data on options on the S&P 500 index is sourced

from the CBOE in the form of best available bid and ask price quotes at the end of every

one-minute period, and then down-sampled to the five-minute frequency (the procedure to

calculate option returns is described in Section 4.4).24 Finally, the daily time-series of the

Left Tail Variance (LTV ) is obtained from www.tailindex.com. Table B.1 collects all the

variables’ definitions.

22RV is estimated as in Andersen et al. (2003). IV is estimated as in Mancini (2009). JV is estimated
as max{RV − IV, 0}.

23https://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html.
24For each day, we use the options with maturity closest to one month, taking the shorter maturity as a

tie breaker. We remove all quotes with zero bid prices and those where the ask price is more than five times
the bid price.
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3.2 Properties of the Tail Risk Premium and Predictors

Our tail risk premium measure ∆P
QES is based on the risk adjustment provided by the

risk-neutral distribution methodology described in Section 2.3. Figure 1 presents the time-

series of the physical expected shortfall ESP, the tail premium ∆P
QES , and the Lagrange

multiplier (LM) for the S&P500 returns coming from the dual problem solved to obtain the

RND on each day. A negative LM means that the marginal investor is long in the index.

The third panel in Figure 1 shows that the investor is always long in the index, which is

a direct consequence of the economic restriction of a non-negative equity premium that we

impose. This restriction also guarantees that our tail risk premium is always above or equal

to zero.25 The first two panels of Figure 1 further reveal that both ESP and ∆P
QES achieve

their peaks during the 2008-2009 subprime crisis. On the other hand, the marginal investor’s

position in the S&P 500 index, which is proportional to minus the LM, is smaller during

times of crisis as compared to non-crisis periods. This is also intuitive and consistent with

flight-to-safety: the agent invests less in the risky asset during crises.

[Figure 1 about here.]

Table 1 reports the persistence of the tail risk premium and the predictor variables and

their correlations. Naturally, measures of risk such as ESP, LTV , RV , IV and JV are

strongly persistent and can be predicted by many of their lags. This is in contrast to risk

premium measures. The VRP is only significantly predicted by its first lag, whereas the

tail risk premium ∆P
QES can only be predicted by the sum of lags 11 through 22. As for

the correlation matrix in Panel B, it can be seen that our tail risk premium measure is not

strongly correlated with any other variable. In particular, it has a 0.26 and 0.04 correlation

with ESP and VRP , respectively. This suggests that our measure captures distinct informa-

tion relative to the physical expected shortfall and the variance risk premium. On the other

25We relax this restriction in Section 4.2 and compare predictability results. In the unrestricted case, for
a significant number of days the average of intra-day S&P500 excess returns is negative. Nonetheless, this
does not affect the predictive ability of our tail premium measure.
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hand, ESP has large correlations with the volatility and jump risk variables. In what follows,

we test the ability of these measures to forecast risk premiums and the future distribution

of S&P 500 returns.

[Table 1 about here.]

3.3 Predicting Risk premiums

3.3.1 Equity Premium

Table 2 reports the forecasting results for 1-day ahead excess returns on the S&P 500

index based on daily predictive regressions. Excess returns are obtained over the 3-month

risk-free rate reported on Kenneth French’s data website, appropriately pro-rated. We inves-

tigate the market return predictability afforded by our tail risk premium while controlling

for several sets of predictors. More specifically, we include as controls the physical expected

shortfall ESP, the variance risk premium VRP , the LTV of Bollerslev et al. (2015) and the

RV (as is or decomposed into JV and IV ).

The first column of Table 2 shows that the physical expected shortfall does not signifi-

cantly predict 1 day-ahead excess market returns. When we include the tail risk premium

in the regression in column (2), ESP remains insignificant. In contrast, ∆P
QES has strong

predictive power for the equity premium. This can be seen from a regression coefficient that

is statistically significant at the 1% level and an adjusted R2 that is relatively high for the

1-day horizon. The positive coefficient indicates that investors require a higher compensa-

tion to hold the market (i.e., a higher excess return) when the tail risk premium increases.

These findings provide new high-frequency evidence that aversion to downside risk (but not

downside risk itself, as captured by ESP) is an important determinant of the equity premium.

Column (3) of Table 2 further includes the VRP as control. The VRP is statistically

insignificant and only marginally increases the adjusted R2. Importantly, such inclusion does

not affect the predictive power of ∆P
QES for excess market returns. Results are very similar
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in column (4) when the expected shortfall is removed from the regression. This suggests that

our tail risk premium reflects distinct information from that contained in the VRP . In fact,

the fifth column shows that if we orthogonalize ∆P
QES with respect to the VRP , it still retains

most of its predictive power for the equity premium. While the variance risk premium is an

important predictor of future market returns at relatively low-frequency horizons (Bollerslev

et al., 2009), we find that the same is not true in a high-frequency environment.

Finally, in the last two columns, we include realized and option-implied measures of

volatility and jump risk. The risk measures are all insignificant, but increase substantially

the R2. In particular, the LTV has no predictive power. This can be rationalized by the

fact that it is computed from options with maturity between 6 and 31 trading days, which

reflect market expectations over relatively long horizons. When these additional variables

are included, the VRP becomes significant at the 5% level, with the expected sign: investors

demand higher market returns when they are more averse to volatility risk (i.e., when VRP =

RV −VIX 2 is more negative). As for our tail premium measure, it remains significant at the

1% level. In Table C.1 in Appendix C, we report the market return predictability results for

5- and 21-day horizons. For these horizons, no variable is able to significantly predict market

returns. This suggests that the primary effect of ∆P
QES on market returns is concentrated

on the day following a shock in tail risk premium.

[Table 2 about here.]

We also investigate whether the market return predictability afforded by ∆P
QES is robust

out-of-sample. To do that, we estimate 1-day ahead predictive regressions using only data

prior to a given date and keep the parameters fixed to predict the excess market return on

day t + 1 given ∆P
QES on day t. We consider different starting dates for the out-of-sample

period (2008-01-01, 2012-01-01, 2015-04-08) and different update frequencies controlling how

often we re-estimate the model, ranging from every month (i.e., we re-estimate the regression

each month to include the most recent data) to never (i.e., we estimate the regression only

once in the training sample). For comparison, we also report results for a univariate model

18

Electronic copy available at: https://ssrn.com/abstract=3211954



with the VRP , which was the only relevant control in Table 2, and a bivariate model with

both ∆P
QES and VRP .

Table 3 contains the results in terms of the out-of-sample predictive R2 for each model,

starting date and update frequency. The univariate model based on our tail risk premium

measure always generates a positive R2, regardless of when the out-of-sample period starts

and how often we re-estimate the model. This indicates that the predictive relation between

∆P
QES and future excess market returns is stable and robust to different economic conditions.

In contrast, the VRP leads to either small or negative R2’s. As a result, the performance

of the univariate tail premium model is uniformly better than that of the bivariate model

including both ∆P
QES and VRP , reinforcing the superiority of our measure for predicting

the equity premium.

[Table 3 about here.]

In sum, we document that our tail risk premium measure is a strong predictor of future

excess market returns at the 1-day horizon. This predictability holds in- and out-of-sample

and is robust to controlling for the expected shortfall, variance risk premium and several

volatility and jump risk variables. Our findings are consistent with the idea that investors

require a higher compensation to hold the market following an increase in aversion to down-

side risk as captured by ∆P
QES .

3.3.2 Variance Risk Premium

Table 4 reports the forecasting results for the 1-day ahead market variance risk premium

based on daily predictive regressions. We consider the same controls as in Table 2. The first

two columns show that, while downside risk as captured by ESP has no predictive power

for the variance risk premium, aversion to downside risk reflected in ∆P
QES appears as a

statistically significant predictor associated with a high R2. This provides new evidence in

a high-frequency environment that part of the variance risk premium can be explained by
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aversion to left tail risk. As can be seen from columns (3) and (4), the lagged VRP also

affords strong predictive power. Importantly, the significance at the 1% level of our tail risk

premium measure is robust to the inclusion of the lagged VRP , even when we consider its

orthogonalized version in the fifth column. In fact, both the ∆P
QES and lagged VRP are

relevant to forecast the variance risk premium, having a similar contribution to the R2’s.

The last two columns reveal that the volatility and jump risk measures are insignificant and

have no impact in the previous results. In Table C.2 in Appendix C, we further report the

VRP predictability for 5- and 21-day horizons. Results are very similar to those of Table 4,

where ∆P
QES robustly predicts the variance risk premium across virtually all horizons and

regression specifications.

[Table 4 about here.]

3.3.3 The Cross-Section of Characteristic-Sorted Portfolio Returns

The previous subsections show that our tail risk premium is an important determinant

of aggregate market risk premiums at high-frequency. In this subsection, we investigate

whether aversion to downside risk, as captured by ∆P
QES , also commands risk premium in a

cross-section of characteristic-sorted portfolios. Portfolios sorted by specific characteristics

reflect compensation for different types of risk beyond those related to the market portfolio.

More specifically, we consider several sets of portfolios sorted according to the often-used

characteristics of size, book-to-market, profitability, investment, momentum, reversal, and

industry. Most of these characteristics form the basis of factor pricing models such as those

of Fama and French (1993, 2015) and Hou et al. (2014).

In Figure 2, we report the results of 1-day ahead predictive regressions of characteristic-

sorted portfolios. We forecast the daily excess returns for each decile portfolio obtained

from sorting stocks on a given characteristic. We consider five sets of daily predictors: i)

∆P
QES , ii) ∆P

QES and ESP, iii) ∆P
QES and RV , iv) ∆P

QES and LTV , and v) ∆P
QES and

VRP . For each decile portfolio, we plot a corresponding group of five t-statistics on ∆P
QES
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calculated with Andrews (1991) standard errors and the adjusted R2 of the regression. For

comparison, Figure 3 reports the same results for univariate predictive regressions based on

each alternative predictor (ESP, RV , LTV and VRP).

Across all sets of predictors and characteristics, the (absolute value of the) t-statistics

on ∆P
QES reported in Panel (a) of Figure 2 are mostly above 2 and often above 3. This

indicates that our tail risk premium measure has strong predictive power for cross-sectional

risk premiums at high-frequency. Such predictive power cannot be explained by the different

controls we consider. In fact, the reported t-statistics are very similar across the different

sets of predictors. Panel (b) further shows that nearly all of the R2’s are between 0.5 and

1.3%, which is of the same order of magnitude of those obtained for market returns in Table

2. The alternative predictors also do not affect the R2, with the exception of VRP which

usually leads to a slight improvement. In Figure 3, we can see that the alternative predic-

tors are individually statistically insignificant for predicting characteristic-sorted portfolios,

yielding mostly negligible R2’s. This reinforces that our tail risk premium measure is the

only predictor of characteristic-portfolios at high-frequency among the variables we consider.

[Figure 2 about here.]

[Figure 3 about here.]

3.4 Predicting the Distribution of Market Returns

The previous section demonstrates that it is the aversion to downside risk (as captured

by ∆P
QES ) rather than the level of downside risk itself (as captured by ESP) that contains

relevant predictive information for risk premiums at high-frequency. In this section, we turn

to an analysis of the predictive power of ∆P
QES and ESP for the whole distribution of future

excess market returns in order to shed light on the differential role of these variables for

explaining the equity premium.
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3.4.1 Quantiles of the Distribution of Market Returns

To understand how different variables affect the distribution of future S&P 500 returns,

we adopt the conditional quantile regression framework introduced by Koenker and Gilbert

(1978). The conditional quantile model for S&P500 daily excess returns {rt}t=1,...,Tq , reads

as follows:

Qrt+h
(τ |pt) = θ0(τ) + θ1(τ)∆P

QESt + θ2(τ)ESt + θ3(τ)V RPt + θ4(τ)RVt, (14)

where pt = {1,∆P
QESt, ESP

t ,VRP t, RVt} and the θjs are functions mapping τ ∈ [0, 1] into

R. This equation states that the conditional τ -quantile of the daily S&P 500 excess return

distribution at time t + h is a linear function of the tail risk premium and control variables

at time t. In the quantile regression of rt+h on the variables in pt, the regression coefficients

θτ are estimated by minimizing the quantile-weighted absolute value of errors:

θ̂τ = arg min
θτ∈R5

Tq−h∑
t=1

(τ ·1(rt+h ≥ ptθτ )|rt+h− ptθτ |+ (1− τ) ·1(rt+h < ptθτ )|rt+h− ptθτ |), (15)

where 1(.) is the indicator function. The predicted quantile conditional on pt is:

Q̂rt+h
(τ |pt) = ptθ̂τ . (16)

We estimate predictive quantile regressions for the 1-day ahead (h = 1) distribution of S&P

500 excess returns over the full sample from January 2, 2004 to December 31, 2018. The

regressions are estimated for the 5th through the 95th percentiles in 10-percentage point

increments, and for the median. We report the estimated coefficients and their standard

deviations for all quantiles in Table 5.

We first focus on the differential contribution of ∆P
QES and ESP for predicting the dis-

tribution of excess market returns. The statistical significance of the estimated coefficients

indicates that an increase in risk (ESP) leads to a larger probability of observing both ex-
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treme negative and positive market returns, whereas an increase in the aversion to downside

risk (∆P
QES ) shifts the quantiles around the median and the whole right tail towards more

positive values. These findings can be interpreted as follows. A positive shock in expected

shortfall means a more volatile market, such that it is usually followed by either a large

decrease or increase of the S&P 500 index. These extreme effects cancel out when predicting

directly the market returns, such that ESP is insignificant in Table 2. In contrast, a positive

shock in the tail risk premium signals that investors are more averse to extreme negative

outcomes, requiring a higher compensation to hold the market. This is reflected in the

positive effect of ∆P
QES on essentially all quantiles of the market return distribution. Such

unambiguous effect translates to the significant positive relation between our tail premium

and future market returns observed in Table 2.

Table 5 also helps understand why VRP and RV lack predictive power for future excess

market returns. A decrease in the VRP (i.e., an increase in the compensation required by

investors to bear variance risk) leads to a positive shift in right tail quantiles, but also to

a negative shift in the left tail quantiles. Similarly, RV has a positive (negative) effect on

the right (left) tail quantiles. This contributes to make the predictive relation with respect

to excess market returns weak, as effects cancel out. In contrast, our tail premium measure

has a positive effect on all quantiles of the S&P 500 return distribution. This reinforces the

predominant role that aversion to downside risk, as measured by ∆P
QES , plays on explaining

future market returns at high-frequency. In the next subsection, we evaluate the quality

of the estimated conditional market return distributions through an out-of-sample study of

conditional interval forecasts.

[Table 5 about here.]

[Table 6 about here.]
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3.4.2 Out-of-Sample Forecasts of the S&P 500 Return Distribution

To assess the out-of-sample predictive power of the different models for various parts

of the return distribution, we rely on the framework developed by Christoffersen (1998) to

evaluate conditional interval forecasts. Namely, we consider the likelihood ratio tests of

interval forecast conditional coverage (CC), which are comprised of the joint tests of interval

forecast error independence (ID) and unconditional coverage (UC). For model evaluation, we

split our data into the estimation sample which contains 75% of the data (2,820 observations

starting on January 2, 2004 and ending on April 7, 2015), and the evaluation sample (the

remaining 940 observations ending on December 31, 2018).

Table 6 reports the results. For all intervals as previously defined, we report the p-values

of the CC, ID and UC tests for several conditioning tests based on different sets of predictors.

The predictor sets are: i) ESP, ii) ∆P
QES , iii) ESP and ∆P

QES , iv) VRP , v) VRP and ESP,

vi) VRP and ∆P
QES , and vii) VRP , ESP and ∆P

QES .26 We also conduct a joint evaluation

of interval forecasts that aggregates forecasts to six intervals spanning the quantiles (0.0 to

0.05], (0.05 to 0.25], (0.25 to 0.5], (0.5 to 0.75], (0.75 to 0.95], and (0.95 to 1.00].

For ESP, the null hypothesis of correct conditional coverage is rejected only for two

intervals, while the independence of prediction errors is never rejected. For the joint interval

test, CC and UC are rejected. Results for ∆P
QES are similar, but there is less efficiency for

intervals covering the left tail. When ∆P
QES is added to ESP in the column titled “Both”,

efficiency improves as there is no rejection in the CC joint interval test. In fact, across nearly

all intervals, results are supportive of interval forecast efficiency. VRP is the predictor that

leads to most rejections of the out-of-sample coverage tests. Even so, the best performance

is obtained with the model including the three predictors, for which there are essentially

no rejections of CC, ID and UC in the joint test and across intervals. Overall, the results

support that the in-sample predictive power of the estimated quantile models containing our

26Due to the fact that VRP has a better performance than RV in the previous quantile regressions, we
decided to drop RV . Results including RV are similar.
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tail premium measure translates to out-of-sample performance.

4 Robustness Analysis

Our tail risk premium measure depends on a number of choices regarding the estimation

of the risk-neutral distribution and the expected shortfall. In this section, we perturb the

method to learn about its sensitivity to those choices and compare its performance to the

baseline case analyzed in Section 3.

4.1 Risk-Neutralization with the Hellinger Discrepancy

Our baseline tail premium measure relies on the particular value of γ = −3 for the

parameter indexing the discrepancy in the Cressie-Read family used for estimating the risk-

neutral distribution. As explained in Section 2.3, this value is chosen to tilt the distribution of

market returns towards large negative returns, as an investor with high aversion to downside

risk does. In this subsection, we check whether this choice is essential to our findings by

investigating if a less drastic risk-adjustment, implied by the Hellinger discrepancy (γ = −1
2
),

produces similar results. This discrepancy is still consistent with aversion to downside risk

(i.e., large negative returns are still overweighted), but gives less probability mass to the left

tail compared to γ = −3.

In Appendix D.1, we plot the time-series of the ∆P
QES obtained using the Hellinger

discrepancy and the associated Lagrange multiplier in Figure D.1. The dynamics of the new

∆P
QES is very similar to that obtained for γ = −3 in Figure 1. The main difference between

the two is that the new ∆P
QES attains smaller values, which is natural as the expected

shortfall under a risk-neutral distribution giving less probability mass to the left tail is

smaller. The Lagrange multipliers, on the other hand, are larger (in absolute value) for γ =

−1
2
. This is because the investor associated with the portfolio optimization problem buys a

larger amount of the risky asset (the market index) as her aversion to downside risk is smaller.
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Table D.1 reproduces the main predictability analysis for the equity premium and variance

risk premium using the new ∆P
QES . The results are very similar to the baseline ones for

γ = −3, where the tail risk premium measure has strong predictive power across all regression

specifications. This confirms that our findings are robust to a change of discrepancy measure

within the Cressie-Read family.

4.2 Risk-Neutralization Without Equity Premium Restrictions

Our baseline estimation of the risk-neutral distribution imposes a non-negativity con-

straint for the conditional equity premium (i.e., for the average of the high-frequency excess

market returns on day t). This is to prevent the marginal investor solving the dual portfolio

problem from shorting the market index, which would imply that marginal utility is low

for negative market return states, such that ESQ would be below ESP. In this subsection,

we drop this restriction and, after re-calculating ∆P
QES , conclude that this has no material

impact on our predictability results.

In Appendix D.2, we plot the time-series of the ∆P
QES obtained without imposing the

restriction on the equity premium and the associated Lagrange multiplier in Figure D.2. The

immediate consequence of allowing for a negative equity premium is that the estimates of

the Lagrange multiplier turn positive on a significant part of the sample (meaning that the

investor sells the market index). This, in turn, makes the implied risk-neutral distribution to

put higher probability weights in states of nature where the index has large positive returns

(which represent negative returns of the investor’s portfolio). As a consequence, ES becomes

smaller under Q than under P during those dates, as visible in the central panel of Figure

D.2. This difference notwithstanding, a visual comparison with our main Figure 1 uncovers

similar dynamics of ∆P
QES with and without restrictions.

Table D.2 reproduces the main predictability analysis for the equity premium and vari-

ance risk premium using the ∆P
QES without restrictions. A comparison with the baseline

results in Tables 2 and 4 suggests that removing the positive equity premium constraint ren-
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ders the estimated ∆P
QES noisier, as the associated t-statistics and R2s of the 1-day horizon

predictive regressions become lower. Even so, the tail risk premium measure still retains sta-

tistical significance and is the strongest predictor of aggregate market risk premiums among

the variables we consider. We therefore conclude that our findings are robust to removing

the equity premium constraint.

4.3 Lower Expected Shortfall Threshold

In our baseline analysis, we set α = 0.2 as the confidence level of the α-quantile of the

return distribution (sα) for calculating the expected shortfalls in equations (2) and (3). In

this subsection, we examine the sensitivity of our results to this choice by setting α = 0.1,

meaning the expected shortfall threshold is farther in the left tail of the returns and there

are less return observations to extract information from.

The results are collected in Appendix D.3. First, decreasing α mechanically translates to

an increase in the ESP measure, which is evident when comparing the left panels of Figures

D.3 and 1. Somewhat less intuitively, we also observe changes to the estimates of the tail

risk premium comparing the central panels of the aforementioned figures. With α = 0.1,

∆P
QES becomes significantly higher than with α = 0.2 in periods of market distress. This

is compatible with heterogeneous investors’ attitudes towards downside risk observed under

different extreme quantiles of the distribution of returns.27

Table D.3 contains the main predictability results for risk premiums using the expected

shortfall and tail premium measures estimated with α = 0.1. We do not observe any changes

relative to our baseline analysis regarding the predictive power of ESP and ∆P
QES for the

equity and variance risk premiums. That is, aversion to downside risk (as captured by our

tail premium measure) has strong predictive power, while downside risk itself (as captured

by the expected shortfall) remains a statistically insignificant predictor.

27See Castro and Galvao (2019) for the development of a rational dynamic model based on quantile utility
preferences.
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4.4 Including Option Returns in the Estimation of the Risk-Neutral

Distribution

Finally, our baseline specification to compute the risk-neutral expected shortfall relies

on a nonparametric risk-neutral distribution extracted solely from high-frequency market

returns. However, in principle the risk-neutral measure can be estimated using information

from any security for which high-frequency return data is available. In particular, given that

options are informative about higher-order risks of the underlying asset, a natural question

is whether adding index option returns to the estimation of the risk-neutral distribution

helps the resulting tail risk premium measure better predict the equity premium. We use

high-frequency data on S&P 500 options to test this possibility.

Using our high-frequency option data, we calculate the index option returns as follows.

In each five-minute window, we sort out-of-the-money (OTM) call (put) options into five

portfolios based on the absolute value of their Black-Scholes delta, denoted as ∆01 (deep

OTM options with absolute deltas ranging from 0.0 to 0.1) through ∆05 (close to at-the-

money (ATM) options with absolute deltas ranging from 0.4 to 0.5). Next, we calculate

the mid price for each option. In the following step, we match the observations in a given

five-minute window to those in the subsequent window, and we discard options with no

match. We further drop from the return calculation the options whose mid prices did not

change between two observation windows. Finally, from the remaining data we calculate the

equally-weighted return on each option portfolio.

We estimate the risk-neutral distribution by solving the minimum discrepancy problem

in (5) including as basis assets the S&P 500 market index and one option portfolio at a

time.28 The excess market return predictability results for the tail premium are reported in

Table 7, where each column corresponds to the estimation including option returns grouped

by the indicated ∆. We include ESP as control and consider the 1-day horizon. The tail risk

28We refrain from including all option portfolios at once in the estimation as the number of basis assets
would be too large relative to the number of high-frequency observations, which can lead to unstable results.
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premium ∆P
QES is statistically significant only for the call groups ∆01 and ∆03. In terms

of R2, this model performs worse than the equivalent one without options in Table 2 (0.63

and 0.65 for ∆01 and ∆03, respectively, against 0.73). For all other option portfolios, there

is little predictive power coming from the associated tail risk premium.

The results above can be rationalized by the following. When we include option and index

returns together in the estimation of the risk-neutral measure, we lose the interpretation of

how the risk-neutral measure acts on index returns. When the S&P 500 index is the unique

asset, the risk-neutral distribution overweights market negative returns and underweights

positive ones, provided that the equity premium is positive. This is such that the risk-neutral

expected shortfall appropriately reflects downside risk of the market index. In contrast, when

the index and an option portfolio are basis assets, the risk-neutral distribution overweights

negative returns coming from the optimal solution of the dual portfolio problem (i.e., a linear

combination of index and option returns), which are not necessarily negative realizations of

the market. Table 7 shows that this hurts performance, giving support to our baseline

specification using only market returns for the estimation.

[Table 7 about here.]

5 Conclusion

In this paper, we propose a new method to compute tail risk premium at high-frequency

using solely intra-day market returns and a risk-neutralization algorithm. Empirically, we

show that our tail risk premium measure has strong predictive power for aggregate market

and cross-sectional risk premiums at short horizons. Such predictability is robust to control-

ling for established measures of risk and risk premiums and to different specifications of our

measure. Our findings provide new high-frequency evidence that aversion to downside risk

is fundamental to explain asset pricing behavior. A natural extension of our method would

be to use a cross-section of high-frequency returns to investigate to what extent this would

29
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improve the model forecasting ability.
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Figure 1: Time series of the tail measures implied by the S&P 500 intraday data.
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Figure 2: Predictive regressions: Fama-French portfolios

Summary of predictive regressions of the 1-day ahead excess return on Fama-French portfolios of stocks sorted on Size,
Book/Market, Profitability, Investment, Momentum, Reversal, and the 10 Industry portfolios. Five regression specifications
are considered, using the following regressors: (i) ∆P

QES , (ii) ∆P
QES and ESP, (iii) ∆P

QES and RV , (iv) ∆P
QES and LTV ,

(v) ∆P
QES and VRP . We report Andrews (1991) standard errors calculated with the use of the sandwich 3.0.0 package for

R 4.0.3 (Zeileis et al., 2020).

(a) t-statistics of ∆P
QES in predictive regressions

0

1

2

3

4

5

lo
1
0

d
ec

2

d
ec

3

d
ec

4

d
ec

5

d
ec

6

d
ec

7

d
ec

8

d
ec

9

h
i

1
0

A
b

so
lu

te
va

lu
e

o
f

H
A

C
t-

st
at

is
ti

c

Size

0

1

2

3

4

5

lo
1
0

d
ec

2

d
ec

3

d
ec

4

d
ec

5

d
ec

6

d
ec

7

d
ec

8

d
ec

9

h
i

1
0

Book/Market

0

1

2

3

4

5

lo
1
0

d
ec

2

d
ec

3

d
ec

4

d
ec

5

d
ec

6

d
ec

7

d
ec

8

d
ec

9

h
i

10

Profitability

0

1

2

3

4

5

lo
1
0

d
ec

2

d
ec

3

d
ec

4

d
ec

5

d
ec

6

d
ec

7

d
ec

8

d
ec

9

h
i

1
0

Investment

0

1

2

3

4

5

lo
p
ri

or

p
ri

or
2

p
ri

or
3

p
ri

or
4

p
ri

or
5

p
ri

or
6

p
ri

or
7

p
ri

or
8

p
ri

or
9

h
i

p
ri

or

A
b

so
lu

te
va

lu
e

o
f

H
A

C
t-

st
at

is
ti

c

Momentum

0

1

2

3

4

5

lo
p
ri

or

p
ri

or
2

p
ri

or
3

p
ri

or
4

p
ri

or
5

p
ri

or
6

p
ri

or
7

p
ri

or
8

p
ri

or
9

h
i

p
ri

or

Reversal

0

1

2

3

4

5

d
u
rb

l

en
rg

y

h
it

ec

h
lt

h

m
an

u
f

n
o
d
u
r

ot
h
er

sh
op

s

te
lc

m

u
ti

ls

10 Industries

Predictors: ∆P
QES ∆P

QES + ES ∆P
QES + RV ∆P

QES + LTV ∆P
QES + V RP

(b) R2 of predictive regressions
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Figure 3: Predictive regressions: Fama-French portfolios, alternative predictors

Summary of predictive regressions of the 1-day ahead excess return on Fama-French portfolios of stocks sorted on Size,
Book/Market, Profitability, Investment, Momentum, Reversal, and the 10 Industry portfolios. Four regression specifications
are considered, using the following regressors: (i) ESP, (ii) RV , (iii) LTV , (iv) VRP . We report Andrews (1991) standard
errors calculated with the use of the sandwich 3.0.0 package for R 4.0.3 (Zeileis et al., 2020). In order to facilitate the
comparison with the main predictability results for Fama-French portfolios, the axis scales are set the same as in Figure 2.

(a) t-statistics of alternative predictors
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(b) R2 of predictive regressions
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Table 1: Persistence and co-dependence of the predictors of risk premia

Panel A presents the estimates of HAR-type (see Corsi, 2009) predictive models for each risk premium predictor.
The labels “Lag 1” through “Lag 5” denote the appropriately lagged regressand. The label “Lag 1W” denotes the
sum of lags 6 through 10 of the regreessand, and the label “Lag 1M” the sum of lags 11 through 22. All reported
coefficients and standard errors are rounded to two decimal places. Those significant at the 0.05 confidence
level are printed in bold and those significant at the 0.01 level are additionally marked with a ⋆. We report
Andrews standard errors calculated with the use of the sandwich 3.0.0 package for R 4.0.3. Panel B presents
the correlation matrix of the predictors. ESP is the non-parametric estimate of realized (physical) Expected
Shortfall of intra-day S&P 500 returns before the close, on the day when each return calculation commences,
ESP

t = −Et[Rit|Rit ≤ F−1
Rt

(0.2)]. The tail risk premium ∆P
QES , is the difference between the risk-neutral and the

physical ES . VRP is the variance risk premium calculated as the difference between the day’s realized variance
and the (appropriately scaled) VIX2 index. LTV is the Left Tail Variance of Bollerslev et al. (2015) obtained from
www.tailindex.com. RV is the realized variance of intra-day returns on the S&P500 Index. IV is an estimate of
integrated quadratic variation, the continuous component of realized variance, estimated as in Mancini and Gobbi
(2012). JV is the jump component of realized variance, calculated as max{RV − IV , 0}. RV , IV , and JV are
calculated from return data sampled at the 5-minute frequency.

Panel A: Persistence of the Predictors of Risk Premia

(1) (2) (3) (4) (5) (6) (7)

∆P
QES ESP VRP LTV RV IV JV

Lag 1 0.00 0.41⋆ 0.15⋆ 0.86⋆ 0.37⋆ 0.38⋆ 0.16⋆

(0.03) (0.04) (0.06) (0.05) (0.09) (0.10) (0.06)

Lag 2 0.01 0.29⋆ 0.36 0.05 0.42 0.45⋆ 0.22⋆

(0.11) (0.09) (0.20) (0.06) (0.18) (0.17) (0.08)

Lag 3 −0.01 0.05 0.05 0.28⋆ 0.03 −0.03 0.20⋆

(0.06) (0.07) (0.09) (0.10) (0.06) (0.07) (0.08)

Lag 4 0.05 0.10 0.27 0.01 0.36⋆ 0.35 0.03
(0.07) (0.10) (0.14) (0.09) (0.14) (0.19) (0.04)

Lag 5 −0.03 0.10 0.19 0.21⋆ 0.24 0.33 0.14
(0.08) (0.08) (0.14) (0.08) (0.14) (0.18) (0.05)

Lag 1W 0.08 −0.03 −0.10 −0.12⋆ −0.14 −0.14 −0.12⋆

(0.07) (0.05) (0.09) (0.04) (0.07) (0.10) (0.04)

Lag 1M 0.02⋆ 0.01⋆ 0.02 0.01⋆ 0.02 0.01 0.06⋆

(0.01) (0.00) (0.01) (0.00) (0.01) (0.01) (0.02)

Constant 0.00⋆ 0.00 0.00 0.00⋆ 0.00 0.00 0.00
(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

R2 (adj) 0.09 0.72 0.22 0.85 0.61 0.63 0.19
N 3748 3748 3748 3691 3748 3748 3748

Panel B: Correlation Matrix of the Predictors of Risk Premia

ESP VRP LTV RV IV JV

∆P
QES 0.26 0.04 0.31 0.30 0.28 0.26

ESP 0.41 0.70 0.88 0.88 0.51
VRP 0.05 0.67 0.64 0.56
LTV 0.71 0.71 0.35
RV 0.98 0.66
IV 0.51
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Table 2: Predictive regressions: S&P 500 excess returns

The table reports regression coefficients and their standard deviations (in parentheses) of predictive regressions
of the close-to-close S&P 500 excess returns at the 1-day horizon. All reported coefficients and standard errors
are rounded to two decimal places. Those significant at the 0.05 confidence level are printed in bold and those
significant at the 0.01 level are additionally highlighted with a ⋆. We report Andrews (1991) standard errors
calculated with the use of the sandwich 3.0.0 package for R 4.0.3 (Zeileis et al., 2020). ESP is the non-
parametric estimate of realized (physical) Expected Shortfall of intra-day S&P 500 returns before the close, on the
day when each return calculation commences, ESP

t = −Et[Rit|Rit ≤ F−1
Rt

(0.2)]. Our Tail Risk Premium measure,

∆P
QES , is the difference between the risk-neutral and the physical ES . VRP is the variance risk premium calculated

as the difference between the day’s realized variance and the (appropriately scaled) VIX2 index. ∆P
QES

⊥ is the
component of the tail risk measure that is orthogonal to the variance risk premium. LTV is the Left Tail Variance
of Bollerslev et al. (2015) obtained from www.tailindex.com. RV is the realized variance of intra-day returns
on the S&P500 Index. IV is an estimate of integrated quadratic variation, the continuous component of realized
variance, estimated as in Mancini and Gobbi (2012). JV is the jump component of realized variance, calculated
as max{RV − IV , 0}. RV , IV , and JV are calculated from return data sampled at the 5-minute frequency.

(1) (2) (3) (4) (5) (6) (7)

ESP 0.17 −0.16 −0.32 −2.04 −2.01
(0.77) (0.87) (0.58) (1.15) (1.13)

∆P
QES 7.50⋆ 7.65⋆ 7.19⋆ 8.83⋆ 8.75⋆

(2.90) (2.63) (2.68) (2.83) (2.66)
VRP 2.35 1.53 0.94 −15.90 −16.05

(8.79) (9.07) (9.25) (7.74) (7.79)
∆P

QES⊥ 6.63

(2.76)
RV 15.25

(10.36)
LTV −0.10 −0.10

(0.07) (0.07)
JV 17.73

(14.14)
IV 14.79

(10.81)
Constant 0.00 0.00 0.00 0.00 0.00 0.00 0.00

(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)
R2 (adj %) 0.00 0.73 0.76 0.75 0.62 2.03 2.01
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Table 3: Out-of-sample predictive power for S&P 500 excess returns

This table reports the out-of-sample predictive R2 (in percent) of predictive linear models for S&P 500
excess returns estimated using two regressors: ∆P

QES and VRP . The predictive R2 is calculated as

1 − 1
T

∑
t(Rt − R̂t)

2/ 1
T

∑
t(Rt)

2, where Rt is the excess return on the S&P 500 index, and R̂t is a given
model’s prediction. Predictive regressions are estimated on expanding samples starting in January 2008
(columns (1) through (3)), January 2012 (columns (4) through (6)), and April 2015 (columns (7) through
(9)). In the first two columns of each sub-panel we consider univariate predictive models, and in each
respective third column, a model containing both predictors. Across the rows of the table we consider
different parameter update frequencies, from every month in the top row to no updates (i.e., the parameters
are estimated on data prior to the starting date and never updated) in the final row.

OOS from 2008-01-01 OOS from 2012-01-01 OOS from 2015-04-08

(1) (2) (3) (4) (5) (6) (7) (8) (9)

Update freq. ∆P
QES VRP Both ∆P

QES VRP Both ∆P
QES VRP Both

1 months 0.1 −1.1 −0.3 0.8 0.0 0.7 1.5 0.0 1.4
3 months 0.0 −1.4 −0.3 0.8 0.2 0.8 1.7 0.2 1.6
6 months 0.7 0.0 0.6 0.7 0.2 0.7 1.6 0.2 1.6

12 months 0.6 −0.1 0.3 0.5 0.2 0.5 1.6 0.1 1.6
24 months 0.7 0.0 0.5 0.5 0.2 0.4 1.6 0.0 1.5

Never 0.8 0.1 0.8 0.7 0.0 0.6 1.6 −0.1 1.4
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Table 4: Predictive regressions: short-term variance risk premium

The table reports regression coefficients and their standard deviations (in parentheses) for predictive regressions
of the variance risk premium at the 1-day horizon. All reported coefficients and standard errors are rounded to
two decimal places. Those significant at the 0.05 confidence level are printed in bold and those significant at
the 0.01 level are additionally highlighted with a ⋆. We report Andrews (1991) standard errors calculated with
the use of the sandwich 3.0.0 package for R 4.0.3 (Zeileis et al., 2020). ESP is the non-parametric estimate
of realized (physical) Expected Shortfall of intra-day S&P 500 returns before the close, on the day when each
return calculation commences, ESP

t = −Et[Rit|Rit ≤ F−1
Rt

(0.2)]. Our Tail Risk Premium measure, ∆P
QES , is

the difference between the risk-neutral and the physical ES . VRP is the variance risk premium calculated as
the difference between the day’s realized variance and the (appropriately scaled) VIX2 index. ∆P

QES
⊥ is the

component of the tail risk measure that is orthogonal to the variance risk premium. LTV is the Left Tail Variance
of Bollerslev et al. (2015) obtained from www.tailindex.com. RV is the realized variance of intra-day returns
on the S&P500 Index. IV is an estimate of integrated quadratic variation, the continuous component of realized
variance, estimated as in Mancini and Gobbi (2012). JV is the jump component of realized variance, calculated
as max{RV − IV , 0}. RV , IV , and JV are calculated from return data sampled at the 5-minute frequency.

(1) (2) (3) (4) (5) (6) (7)

ESP 0.02 0.00 −0.02⋆ −0.03 −0.03
(0.01) (0.01) (0.01) (0.02) (0.01)

∆P
QES 0.38⋆ 0.40⋆ 0.36⋆ 0.22⋆ 0.22⋆

(0.14) (0.14) (0.13) (0.06) (0.06)
VRP 0.32⋆ 0.26⋆ 0.23⋆ 0.38⋆ 0.39⋆

(0.07) (0.06) (0.07) (0.10) (0.10)
∆P

QES⊥ 0.38⋆

(0.14)
RV 0.01

(0.11)
LTV 0.00 0.00

(0.00) (0.00)
JV −0.09

(0.26)
IV 0.01

(0.10)
Constant 0.00⋆ 0.00⋆ 0.00 0.00⋆ 0.00⋆ 0.00 0.00

(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)
R2 (adj %) 9.24 23.31 30.93 29.56 30.34 29.91 29.95
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Table 5: Predictive quantile regressions: S&P 500 excess returns

The table reports quantile regression coefficients and their standard deviations (in parentheses) of quantile regres-
sions predicting the distribution of the excess returns on the S&P 500 index at the 1-day horizon. The sample is
from 2004-01-02 to 2018-12-31. All reported coefficients and standard errors are rounded to two decimal places.
Those significant at the 0.05 confidence level are printed in bold and those significant at the 0.01 level are addition-
ally highlighted with a ⋆. Those significant at the 0.01 level are additionally marked with a ⋆. The standard errors
are computed by pairwise bootstrap with the use of the quantreg 5.83 (Koenker, 2013) package for R 4.0.3.
The R1 goodness-of-fit measure is calculated as in Koenker and Machado (1999). ESP is the non-parametric
estimate of realized (physical) Expected Shortfall of intra-day S&P 500 returns before the close, on the day when
each return calculation commences, ESP

t = −Et[Rit|Rit ≤ F−1
Rt

(0.2)]. Our Tail Risk Premium measure, ∆P
QES , is

the difference between the risk-neutral and the physical ES . RV is the realized variance of intra-day returns on
the S&P500 Index. The daily value of the VRP is defined as VRP ≡ RV × 365− (VIX /100)2.

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)

Quantile: 0.05 0.15 0.25 0.35 0.45 0.5 0.55 0.65 0.75 0.85 0.95

∆P
QES 1.32 4.05 4.05 5.99⋆ 7.39⋆ 7.65⋆ 8.05⋆ 7.81⋆ 7.41 10.83 12.27⋆

(4.81) (4.81) (2.48) (2.24) (2.21) (2.14) (2.18) (2.39) (2.89) (4.40) (3.03)

ES −9.90⋆ −6.40⋆ −4.31⋆ −1.10 0.00 −0.05 0.66 1.11 3.12⋆ 4.20⋆ 7.39⋆

(2.22) (1.65) (1.18) (1.17) (0.96) (1.02) (0.95) (1.04) (1.15) (1.18) (1.46)

VRP 34.43⋆ 19.63 8.04 1.96 −4.94 −8.65 −11.02 −14.84 −22.85⋆ −35.73⋆ −53.82⋆

(11.32) (9.21) (7.89) (5.81) (5.24) (4.66) (5.46) (6.65) (8.83) (8.10) (7.94)

RV −25.57 −17.39 −5.65 −10.83 −5.26 1.77 2.23 12.79 16.46 24.11⋆ 31.67⋆

(15.07) (13.98) (9.94) (8.08) (8.59) (8.99) (8.56) (10.59) (9.01) (9.02) (10.02)

Constant 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00⋆

(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

R1(%) 21.55 9.36 4.04 1.45 0.56 0.63 1.09 2.85 6.16 13.45 29.82
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Table 6: Out-of-sample interval forecast tests of S&P 500 excess return distribution models

The table reports the results of evaluating out-of-sample interval forecasts for the excess returns on the S&P
500 index obtained with different quantile predictive model specifications. Each row contains the p-values of the
Christoffersen (1998) tests of interval forecast conditional coverage (CC), interval forecast error independence (ID)
and unconditional coverage (UC) for the quantile interval indicated in the first column. The row denoted “Joint”
contains the result of a joint evaluation of interval forecasts which follows Section 4.2 in Christoffersen (1998) and
aggregates the interval forecasts to six intervals spanning the quantiles (0.0 to 0.05], (0.05 to 0.25], (0.25 to 0.5],
(0.5 to 0.75], (0.75 to 0.95], and (0.95 to 1.00]. For model evaluation purposes, we split our data into the estimation
sample which contains 75% of the data (2,820 observations starting on 2004-01-02 and ending on 2015-04-07), and
the evaluation sample (the remaining 940 observations ending on 2018-12-31). The p-values which indicate the
rejection of the null hypotheses at the 0.05 level are printed in bold face. Those that indicate rejections at the 0.01
level are further marked with a ⋆. All model specifications contain a constant term and the regressor set indicated
on the label. ESP is the non-parametric estimate of realized (physical) Expected Shortfall of intra-day S&P 500
returns before the close, on the day when each return calculation commences, ESP

t = −Et[Rit|Rit ≤ F−1
Rt

(0.2)].

Our Tail Risk Premium measure, ∆P
QES , is the difference between the risk-neutral and the physical ES . The

daily value of the VRP is defined as VRP ≡ RV × 365− (VIX /100)2. “Both” indicates that the predictive model
contains both the ESP and ∆P

QES terms.

ES ∆P
QES Both VRP VRP+ES VRP+∆P

QES VRP+Both

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14) (15) (16) (17) (18) (19) (20) (21)

Interval CC ID UC CC ID UC CC ID UC CC ID UC CC ID UC CC ID UC CC ID UC

Joint 0.05 0.25 0.01 0.00⋆ 0.07 0.00⋆ 0.19 0.80 0.00⋆ 0.00⋆ 0.00⋆ 0.00⋆ 0.12 0.65 0.00⋆ 0.00⋆ 0.09 0.00⋆ 0.66 0.80 0.21

0.0 – 0.05 0.10 0.08 0.20 0.00⋆ 0.02 0.01⋆ 0.25 0.28 0.20 0.00⋆ 0.00⋆ 0.02 0.70 0.49 0.62 0.00⋆ 0.06 0.00⋆ 0.41 0.36 0.33
0.05 – 0.15 0.93 0.72 0.87 0.00⋆ 0.05 0.00⋆ 0.80 0.51 0.96 0.00⋆ 0.03 0.00⋆ 0.75 0.64 0.54 0.00⋆ 0.02 0.00⋆ 0.95 0.76 0.96
0.15 – 0.25 0.99 0.99 0.87 0.14 0.20 0.13 0.36 0.33 0.29 0.07 0.04 0.29 0.96 0.93 0.78 0.08 0.10 0.13 0.96 0.93 0.78
0.25 – 0.35 0.01⋆ 0.24 0.00⋆ 0.17 0.98 0.06 0.03 0.58 0.01⋆ 0.23 0.66 0.10 0.32 0.51 0.18 0.71 0.95 0.42 0.93 0.99 0.70
0.35 – 0.45 0.91 0.66 0.96 0.00⋆ 0.87 0.00⋆ 0.39 0.57 0.22 0.00⋆ 0.80 0.00⋆ 0.56 0.42 0.47 0.00⋆ 0.57 0.00⋆ 0.76 0.83 0.48
0.45 – 0.5 0.69 0.94 0.39 0.02 0.17 0.01 0.33 0.71 0.15 0.03 0.21 0.02 0.04 0.85 0.01 0.25 0.39 0.15 0.32 0.42 0.20
0.5 – 0.55 0.39 0.46 0.25 0.06 0.52 0.02 0.10 0.07 0.26 0.08 0.96 0.02 0.61 0.45 0.52 0.00⋆ 0.75 0.00⋆ 0.12 0.05 0.62
0.55 – 0.65 0.23 0.42 0.16 0.88 0.75 0.62 0.44 0.94 0.24 0.38 0.73 0.15 0.55 0.33 0.70 0.28 0.14 0.48 0.71 0.94 0.41
0.65 – 0.75 0.02 0.24 0.01 0.68 0.74 0.41 0.03 0.02 0.16 0.71 0.94 0.41 0.01⋆ 0.37 0.00⋆ 0.54 0.28 0.78 0.30 0.31 0.29
0.75 – 0.85 0.95 0.76 0.96 0.77 0.59 0.62 0.83 0.94 0.54 0.64 0.65 0.41 0.39 0.17 0.87 0.68 0.74 0.41 0.24 0.44 0.13
0.85 – 0.95 0.56 0.83 0.29 0.29 0.29 0.24 0.87 0.65 0.78 0.33 0.45 0.20 0.59 0.45 0.47 0.42 0.26 0.47 0.25 0.33 0.18
0.95 – 1.0 0.05 0.24 0.03 0.00⋆ 0.09 0.00⋆ 0.19 0.35 0.12 0.01⋆ 0.27 0.00⋆ 0.01⋆ 0.62 0.00⋆ 0.00⋆ 0.02 0.00⋆ 0.21 0.71 0.09
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Table 7: Predictive regressions: S&P 500 excess returns with option-implied tail premium

The table reports regression coefficients and their standard deviations (in parentheses) for predictive regressions of
the close-to-close S&P 500 excess returns at the 1-day horizon with ∆P

QES calculated with the use of risk-neutral
probabilities obtained from the joint risk-neutralization of high-frequency returns on the S&P 500 index and on
options thereon, with options grouped into five portfolios based on their type and ∆. ∆01 corresponds to deep
out of the money options while ∆05 corresponds to at the money options. All reported coefficients and standard
errors are rounded to two decimal places. Those significant at the 0.05 confidence level are printed in bold and
those significant at the 0.01 level are additionally highlighted with a ⋆. We report Andrews (1991) standard
errors calculated with the use of the sandwich 3.0.0 package for R 4.0.3 (Zeileis et al., 2020). ESP is the non-
parametric estimate of realized (physical) Expected Shortfall of intra-day S&P 500 returns before the close, on the
day when each return calculation commences, ESP

t = −Et[Rit|Rit ≤ F−1
Rt

(0.2)]. Our Tail Risk Premium measure,

∆P
QES , is the difference between the risk-neutral and the physical ES .

Call options Put options

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

∆01 ∆02 ∆03 ∆04 ∆05 ∆01 ∆02 ∆03 ∆04 ∆05

∆P
QES 6.85⋆ 3.87 6.09⋆ 2.49 2.22 4.21 3.37 3.09 1.98 2.67

(2.46) (2.22) (1.90) (1.62) (1.68) (2.93) (2.71) (2.43) (2.78) (2.73)
ESP −0.07 0.02 −0.04 0.10 0.04 0.00 −0.02 0.00 0.02 0.04

(0.78) (0.77) (0.79) (0.81) (0.80) (0.82) (0.84) (0.81) (0.86) (0.84)
Constant 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)
R2 (adj %) 0.63 0.25 0.65 0.14 0.09 0.25 0.17 0.15 0.06 0.16

44
Electronic copy available at: https://ssrn.com/abstract=3211954



Appendix

A Extreme Value Theory, Expected Shortfall and the

Tail Shape Parameter

Extreme Value Theory (EVT) shows that once we are looking far in the tail of a random
variable X representing losses (negative of the returns) with a given distribution F , at values
larger than an exogenous threshold u, the conditional distribution function F (X ≤ x | x ≥ u)
can be well approximated by a Generalized Pareto Distribution (GPD) G(ξ, β), defined
below.29 We use this result to identify a direct link between our ES measures of risk defined
under Pt and Qt and the corresponding shape parameters ξPt and ξQt that determine the
thickness of the GPD’s capturing the behavior of the tails of Pt and Qt .

The cumulative GPD distribution function is given by Gξ,β(x) = 1 − (1 + ξx
β

)−
1
ξ , x ≥

0, β > 0, 0 < ξ < 1, where β is a scaling parameter and ξ the shape parameter. The larger
the ξ, the thicker the tail is. It is well-known that given a sample of returns R = {R1, ...RT}
whose conditional tail distribution is approximated by a GPD and a fixed confidence level
α, there is a direct relation between the expected shortfall measure with confidence level α,
ESα(R), the Value-at-Risk based on the same confidence level, V aRα(R), and the shape
parameter ξ:

ESα(R) =
V aRα(R)

1 − ξ
+

β − ξu

1 − ξ
. (A.1)

Our tail risk measures (ESPt
t , ESQt

t ) and tail risk premium (∆P
QESt) are calculated on a

daily frequency. Following Bollerslev and Todorov (2014), we allow the tail’s shape param-
eters (ξPt , ξQt ) to be time-varying. Assuming for simplicity that the threshold u and scale β
parameters are time-invariant and common to both physical and risk-neutral distributions,
we can invert (A.1) to obtain the time-varying shape parameters as hyperbolic functions of
our ES measures:

ξPt = 1 +
V aRP,α

t + β − u

u− ESP,α
t

, (A.2)

ξQt = 1 +
V aRQ,α

t + β − u

u− ESQ,α
t

. (A.3)

Equation (A.1) also implies that our tail risk premium is a continuous function H(., .) of the
time-varying tail shape parameters of both physical and risk-neutral distributions:

∆P
QES t = H(ξPt , ξ

Q
t ). (A.4)

Bollerslev and Todorov (2014) and Bollerslev et al. (2015) propose the left jump tail
variance (LTV ), a risk-neutral jump tail risk measure for the S&P 500 returns. They build a
new dynamic model for the S&P 500 prices under the risk neutral measure Q, whose dynamics
is decomposed into a continuous stochastic volatility component and a jump component
with time-varying stochastic jump-intensity. The key novelty with respect to the previous
literature is the use of EVT to model the tails (both left and right) of the jump-intensity
measure, suggesting that they follow Frechet distributions with time-varying shape/decay

29This threshold-exceedance distribution, or distribution of the tail, is usually identified based on a sample
of observed random variables with the same distribution F . See Chapter 7 in McNeil et al. (2005) for more
details on EVT.
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parameters F (x) = x−αt , αt > 0. They adopt the inverse of this shape parameter, ξt = 1
αt

,
as a measure of tail risk. Since the Frechet distribution is directly comparable to the GPD
when the shape parameter ξ is positive (i.e., ξt > 0), equations (A.3) and (A.4) directly
connect our risk-neutral expected shortfall (ESQ) and tail risk premium (∆P

QES ) measures
to LTV .

Moreover, since ESQ
t is an invertible function of ξQt and ∆P

QESt is linear in ESQ
t , LTV

and our tail measures, at least from a theoretical point of view, induce the same probability
filtration (i.e., the same information sets) along the time dimension. However, they naturally
differ in practice in terms of their estimation procedure and data used. LTV is estimated
with the use of options. It represents the expected (risk-neutral) return volatility that
stems from large negative price jumps. To identify and separate the diffusive part and
the jump component of the return process, Bollerslev et al. (2015) use index options with
maturity between 6 and 31 trading days, reflecting market expectations over these horizons.
In contrast, our tail risk premium measure relies on high-frequency market return data,
containing information completely conditional on day t.

B Variable definitions

Table B.1: Definitions of risk premiums predictors

Variable Description

ESP Estimate of the expected shortfall ESP
t = −Et[Rit|Rit ≤ F−1

Rt
(0.2)] obtained

from the empirical distribution of 5-minute returns on the S&P 500 index
during market opening hours on day t. See equation (2).

∆P
QES Difference between ESP and its Q-measure counterpart; the change of measure

is described in equation (1) and ∆P
QES is defined in equation (4).

∆P
QES

⊥ Residual from the full-sample regression of ∆P
QES on VRP .

VRP RV − (VIX )2/100/365.
RV Realized variance of 5-minute intraday returns on the S&P 500 index during

market opening hours calculated as
∑Nt

j=1( log rjt)
2.

LTV Left Tail Variance the S&P 500 index returns as defined in Bollerslev et al.
(2015) obtained from www.tailindex.com.

IV Integrated quadratic variation of 5-minute intraday returns on the S&P 500
index during market opening hours, the continuous component of RV ,
estimated as in Mancini and Gobbi (2012).

JV The jump component of realized variance, calculated as max{RV − IV , 0}

C Supplementary results
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Table C.1: Predictive regressions: medium- and long-term S&P 500 excess
returns

The table reports regression coefficients and their standard deviations (in parentheses) of predictive
regressions of the close-to-close S&P 500 excess returns at the 5- and 21-day horizons. All reported
coefficients and standard errors are rounded to two decimal places. Those significant at the 0.05
confidence level are printed in bold and those significant at the 0.01 level are additionally highlighted
with a ⋆. We calculate standard errors for overlapping observations using the procedure of Britten-
Jones et al. (2011). ESP is the non-parametric estimate of realized (physical) Expected Shortfall of
intra-day S&P 500 returns before the close, on the day when each return calculation commences,
ESP

t = −Et[Rit|Rit ≤ F−1
Rt

(0.2)]. Our Tail Risk Premium measure, ∆P
QES , is the difference between

the risk-neutral and the physical ES . VRP is the variance risk premium calculated as the difference
between the day’s realized variance and the (appropriately scaled) VIX2 index. ∆P

QES
⊥ is the

component of the tail risk measure that is orthogonal to the variance risk premium. LTV is the
Left Tail Variance of Bollerslev et al. (2015) obtained from www.tailindex.com. RV is the realized
variance of intra-day returns on the S&P500 Index. IV is an estimate of integrated quadratic
variation, the continuous component of realized variance, estimated as in Mancini and Gobbi (2012).
JV is the jump component of realized variance, calculated as max{RV − IV , 0}. RV , IV , and JV
are calculated from return data sampled at the 5-minute frequency.

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14)

5 days 21 days 5 days 21 days 5 days 21 days 5 days 21 days 5 days 21 days 5 days 21 days 5 days 21 days

ESP 0.51 −1.66 0.03 −2.14 0.19 −0.37 −2.61 −5.10 −2.63 −4.98
(2.88) (10.08) (2.77) (9.47) (2.64) (9.86) (4.48) (13.96) (4.41) (13.88)

∆P
QES 11.17 11.33 11.02 9.69 11.29 9.16 8.82 3.81 8.81 6.73

(8.33) (19.69) (9.13) (21.73) (10.60) (30.49) (7.65) (18.27) (7.25) (18.28)
VRP −2.43 −26.50 −1.95 −27.47 −2.53 −27.73 −26.59 −82.43 −27.06 −80.94

(16.95) (42.86) (17.68) (42.73) (17.12) (40.36) (25.60) (82.05) (25.61) (83.73)
∆P

QES⊥ 8.69 4.72

(10.77) (31.82)
RV 28.22 50.48

(39.78) (122.31)
LTV −0.24 −0.48 −0.24 −0.49

(0.27) (0.70) (0.27) (0.70)
JV 29.57 1.10

(45.40) (150.93)
IV 28.25 54.15

(40.45) (121.18)
Constant 0.00 0.01 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.01

(0.00) (0.01) (0.00) (0.01) (0.00) (0.01) (0.00) (0.00) (0.00) (0.00) (0.00) (0.01) (0.00) (0.01)
R2 (adj %) −0.01 −0.01 0.32 0.09 0.36 0.47 0.27 0.11 0.15 0.09 0.51 0.60 0.50 0.58
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Table C.2: Predictive regressions: medium- and long-term variance risk
premium

The table reports regression coefficients and their standard deviations (in parentheses) for predictive
regressions of the variance risk premium at the 5- and 21-day horizon. All reported coefficients
and standard errors are rounded to two decimal places. Those significant at the 0.05 confidence
level are printed in bold and those significant at the 0.01 level are additionally highlighted with
a ⋆. We calculate standard errors for overlapping observations using the procedure of Britten-
Jones et al. (2011). We report Andrews (1991) standard errors calculated with the use of the
sandwich 3.0.0 package for R 4.0.3 (Zeileis et al., 2020). ESP is the non-parametric estimate
of realized (physical) Expected Shortfall of intra-day S&P 500 returns before the close, on the
day when each return calculation commences, ESP

t = −Et[Rit|Rit ≤ F−1
Rt

(0.2)]. Our Tail Risk

Premium measure, ∆P
QES , is the difference between the risk-neutral and the physical ES . VRP

is the variance risk premium calculated as the difference between the day’s realized variance and
the (appropriately scaled) VIX2 index. ∆P

QES
⊥ is the component of the tail risk measure that

is orthogonal to the variance risk premium. LTV is the Left Tail Variance of Bollerslev et al.
(2015) obtained from www.tailindex.com. RV is the realized variance of intra-day returns on the
S&P500 Index. IV is an estimate of integrated quadratic variation, the continuous component
of realized variance, estimated as in Mancini and Gobbi (2012). JV is the jump component of
realized variance, calculated as max{RV − IV , 0}. RV , IV , and JV are calculated from return
data sampled at the 5-minute frequency.

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14)

Horizon: 5 days 21 days 5 days 21 days 5 days 21 days 5 days 21 days 5 days 21 days 5 days 21 days 5 days 21 days

ESP 0.05 −0.16 0.01 −0.22 −0.10 −0.57⋆ −0.07 −0.20 −0.07 −0.20
(0.07) (0.24) (0.05) (0.17) (0.04) (0.17) (0.06) (0.23) (0.06) (0.22)

∆P
QES 0.84⋆ 1.43⋆ 0.93⋆ 1.75⋆ 0.80⋆ 0.95 0.53⋆ 1.36⋆ 0.58⋆ 1.31⋆

(0.27) (0.51) (0.23) (0.53) (0.26) (0.76) (0.12) (0.32) (0.10) (0.30)
VRP 1.59⋆ 5.13⋆ 1.34⋆ 3.68⋆ 1.26⋆ 3.55⋆ 1.69⋆ 6.40⋆ 1.73⋆ 6.39⋆

(0.18) (0.58) (0.21) (0.93) (0.19) (0.86) (0.43) (1.21) (0.43) (1.09)
∆P

QES⊥ 0.85⋆ 1.20

(0.27) (0.80)
RV −0.22 −1.95

(0.59) (2.06)
LTV 0.00 −0.01 0.00 −0.01

(0.00) (0.01) (0.00) (0.01)
JV −1.14 −1.11

(0.59) (2.40)
IV −0.14 −2.03

(0.66) (1.85)
Constant 0.00⋆ 0.00⋆ 0.00⋆ 0.00⋆ 0.00 0.00 0.00⋆ 0.00⋆ 0.00⋆ 0.00⋆ 0.00⋆ 0.00⋆ 0.00⋆ 0.00⋆

(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)
R2 (adj %) 8.68 8.69 23.26 22.53 32.46 24.92 27.55 19.97 27.54 19.95 32.00 29.98 32.21 31.10
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D Robustness results

D.1 Alternative CR discrepancy

ESP ∆P
QES λ
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Figure D.1: Time series of the tail measures implied by the S&P 500 intraday
data calculated with the Hellinger divergence.
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Table D.1: Predictive regressions: S&P 500 excess returns and variance risk
premium with Hellinger discrepancy

The table reports regression coefficients and their standard deviations (in parentheses) of predictive regressions of the close-to-
close S&P 500 excess returns at the 1-day horizon. All reported coefficients and standard errors are rounded to two decimal
places. Those significant at the 0.05 confidence level are printed in bold and those significant at the 0.01 level are additionally
highlighted with a ⋆. We report Andrews (1991) standard errors calculated with the use of the sandwich 3.0.0 package for R
4.0.3 (Zeileis et al., 2020). ESP is the non-parametric estimate of realized (physical) Expected Shortfall of intra-day S&P 500
returns before the close, on the day when each return calculation commences, ESP

t = −Et[Rit|Rit ≤ F−1
Rt

(0.2)]. Our Tail Risk

Premium measure, ∆P
QES , is the difference between the risk-neutral and the physical ES . VRP is the variance risk premium

calculated as the difference between the day’s realized variance and the (appropriately scaled) VIX2 index. ∆P
QES

⊥ is the
component of the tail risk measure that is orthogonal to the variance risk premium. LTV is the Left Tail Variance of Bollerslev
et al. (2015) obtained from www.tailindex.com. RV is the realized variance of intra-day returns on the S&P500 Index. IV
is an estimate of integrated quadratic variation, the continuous component of realized variance, estimated as in Mancini and
Gobbi (2012). JV is the jump component of realized variance, calculated as max{RV − IV , 0}. RV , IV , and JV are calculated
from return data sampled at the 5-minute frequency.

Panel A: S&P 500 excess returns

(1) (2) (3) (4) (5) (6) (7)

1 day 1 day 1 day 1 day 1 day 1 day 1 day

ESP 0.17 −0.19 −0.35 −2.15 −2.12
(0.77) (0.87) (0.58) (1.14) (1.12)

∆P
QES 11.01 11.26⋆ 10.42⋆ 12.57⋆ 12.42⋆

(4.44) (4.00) (4.04) (4.18) (4.00)
VRP 2.38 1.48 0.91 −16.18 −16.35

(8.97) (9.06) (9.17) (7.79) (7.81)
∆P

QES⊥ 9.54

(4.22)
RV 15.68

(10.36)
LTV −0.10 −0.10

(0.07) (0.07)
JV 18.76

(14.39)
IV 15.16

(10.75)
Constant 0.00 0.00 0.00 0.00 0.00 0.00 0.00

(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)
R2 (adj %) 0.00 0.67 0.70 0.68 0.56 1.95 1.93

Panel B: Variance risk premium

(1) (2) (3) (4) (5) (6) (7)

1 day 1 day 1 day 1 day 1 day 1 day 1 day

ESP 0.02 0.00 −0.02⋆ −0.03 −0.03
(0.01) (0.01) (0.01) (0.02) (0.02)

∆P
QES 0.54⋆ 0.57⋆ 0.52⋆ 0.31⋆ 0.32⋆

(0.20) (0.20) (0.20) (0.09) (0.09)
VRP 0.32⋆ 0.26⋆ 0.22⋆ 0.37⋆ 0.38⋆

(0.07) (0.06) (0.06) (0.10) (0.10)
∆P

QES⊥ 0.54⋆

(0.20)
RV 0.02

(0.11)
LTV 0.00 0.00

(0.00) (0.00)
JV −0.06

(0.27)
IV 0.02

(0.10)
Constant 0.00⋆ 0.00⋆ 0.00 0.00⋆ 0.00⋆ 0.00 0.00

(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)
R2 (adj %) 9.24 21.73 29.38 27.88 28.63 29.53 29.55
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D.2 No equity risk premium constraints
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Figure D.2: Time series of the tail measures implied by the S&P 500 intraday
data calculated without imposing the positive equity risk premium constraint.

51

Electronic copy available at: https://ssrn.com/abstract=3211954



Table D.2: Predictive regressions: S&P 500 excess returns and variance risk
premium without imposing ex-ante equity premium constraints

The table reports regression coefficients and their standard deviations (in parentheses) of predictive regressions of the close-to-
close S&P 500 excess returns at the 1-day horizon. All reported coefficients and standard errors are rounded to two decimal
places. Those significant at the 0.05 confidence level are printed in bold and those significant at the 0.01 level are additionally
highlighted with a ⋆. We report Andrews (1991) standard errors calculated with the use of the sandwich 3.0.0 package for R
4.0.3 (Zeileis et al., 2020). ESP is the non-parametric estimate of realized (physical) Expected Shortfall of intra-day S&P 500
returns before the close, on the day when each return calculation commences, ESP

t = −Et[Rit|Rit ≤ F−1
Rt

(0.2)]. Our Tail Risk

Premium measure, ∆P
QES , is the difference between the risk-neutral and the physical ES . VRP is the variance risk premium

calculated as the difference between the day’s realized variance and the (appropriately scaled) VIX2 index. ∆P
QES

⊥ is the
component of the tail risk measure that is orthogonal to the variance risk premium. LTV is the Left Tail Variance of Bollerslev
et al. (2015) obtained from www.tailindex.com. RV is the realized variance of intra-day returns on the S&P500 Index. IV
is an estimate of integrated quadratic variation, the continuous component of realized variance, estimated as in Mancini and
Gobbi (2012). JV is the jump component of realized variance, calculated as max{RV − IV , 0}. RV , IV , and JV are calculated
from return data sampled at the 5-minute frequency.

Panel A: S&P 500 excess returns

(1) (2) (3) (4) (5) (6) (7)

1 day 1 day 1 day 1 day 1 day 1 day 1 day

ESP 0.17 0.13 −0.02 −1.68 −1.65
(0.77) (0.84) (0.57) (1.21) (1.19)

∆P
QES 5.44 5.55 5.55 6.28⋆ 6.18⋆

(2.39) (2.19) (2.22) (2.22) (2.08)
VRP 2.28 2.22 1.38 −16.05 −16.25

(8.89) (9.01) (9.31) (7.72) (7.79)
∆P

QES⊥ 4.76

(2.32)
RV 15.23

(10.61)
LTV −0.11 −0.11

(0.07) (0.08)
JV 20.21

(13.77)
IV 14.47

(11.24)
Constant 0.00 0.00 0.00 0.00 0.00 0.00 0.00

(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)
R2 (adj %) 0.00 0.58 0.61 0.63 0.45 1.86 1.84

Panel B: Variance risk premium

(1) (2) (3) (4) (5) (6) (7)

1 day 1 day 1 day 1 day 1 day 1 day 1 day

ESP 0.02 0.01 −0.01 −0.02 −0.02
(0.01) (0.01) (0.01) (0.01) (0.01)

∆P
QES 0.27 0.28⋆ 0.28⋆ 0.14⋆ 0.15⋆

(0.11) (0.10) (0.10) (0.05) (0.05)
VRP 0.31⋆ 0.30⋆ 0.25⋆ 0.37⋆ 0.38⋆

(0.07) (0.05) (0.06) (0.10) (0.10)
∆P

QES⊥ 0.30⋆

(0.10)
RV 0.02

(0.11)
LTV 0.00 0.00

(0.00) (0.00)
JV −0.01

(0.28)
IV 0.01

(0.10)
Constant 0.00⋆ 0.00⋆ 0.00 0.00⋆ 0.00⋆ 0.00 0.00

(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)
R2 (adj %) 9.24 19.99 27.40 27.29 28.20 28.22 28.19
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D.3 Alternative threshold for ES calculation
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Figure D.3: Time series of the tail measures implied by the S&P 500 intraday
data with α = 0.10.
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Table D.3: Predictive regressions: S&P 500 excess returns and variance risk
premium with tail measures calculated at the 10th percentile of intraday

returns

The table reports regression coefficients and their standard deviations (in parentheses) of predictive regressions of the close-to-
close S&P 500 excess returns at the 1-day horizon. All reported coefficients and standard errors are rounded to two decimal
places. Those significant at the 0.05 confidence level are printed in bold and those significant at the 0.01 level are additionally
highlighted with a ⋆. We report Andrews (1991) standard errors calculated with the use of the sandwich 3.0.0 package for R
4.0.3 (Zeileis et al., 2020). ESP is the non-parametric estimate of realized (physical) Expected Shortfall of intra-day S&P 500
returns before the close, on the day when each return calculation commences, ESP

t = −Et[Rit|Rit ≤ F−1
Rt

(0.1)]. Our Tail Risk

Premium measure, ∆P
QES , is the difference between the risk-neutral and the physical ES . VRP is the variance risk premium

calculated as the difference between the day’s realized variance and the (appropriately scaled) VIX2 index. ∆P
QES

⊥ is the
component of the tail risk measure that is orthogonal to the variance risk premium. LTV is the Left Tail Variance of Bollerslev
et al. (2015) obtained from www.tailindex.com. RV is the realized variance of intra-day returns on the S&P500 Index. IV
is an estimate of integrated quadratic variation, the continuous component of realized variance, estimated as in Mancini and
Gobbi (2012). JV is the jump component of realized variance, calculated as max{RV − IV , 0}. RV , IV , and JV are calculated
from return data sampled at the 5-minute frequency.

Panel A: S&P 500 excess returns

(1) (2) (3) (4) (5) (6) (7)

1 day 1 day 1 day 1 day 1 day 1 day 1 day

ESP 0.11 −0.13 −0.26 −1.76 −1.75
(0.61) (0.67) (0.44) (0.87) (0.86)

∆P
QES 5.80⋆ 5.91⋆ 5.57⋆ 6.97⋆ 6.85⋆

(2.17) (2.00) (2.04) (2.25) (2.11)
VRP 2.43 1.54 1.01 −16.39 −16.63

(8.84) (9.14) (9.27) (7.48) (7.71)
∆P

QES⊥ 5.16

(2.08)
RV 16.60

(9.86)
LTV −0.11 −0.11

(0.07) (0.07)
JV 20.12

(14.14)
IV 16.14

(10.25)
Constant 0.00 0.00 0.00 0.00 0.00 0.00 0.00

(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)
R2 (adj %) 0.00 0.74 0.77 0.75 0.63 2.16 2.14

Panel B: Variance risk premium

(1) (2) (3) (4) (5) (6) (7)

1 day 1 day 1 day 1 day 1 day 1 day 1 day

ESP 0.01 0.00 −0.01⋆ −0.02 −0.02
(0.01) (0.01) (0.01) (0.01) (0.01)

∆P
QES 0.27⋆ 0.29⋆ 0.27⋆ 0.16⋆ 0.16⋆

(0.10) (0.10) (0.10) (0.05) (0.05)
VRP 0.31⋆ 0.26⋆ 0.23⋆ 0.37⋆ 0.38⋆

(0.07) (0.06) (0.06) (0.10) (0.10)
∆P

QES⊥ 0.28⋆

(0.10)
RV 0.03

(0.10)
LTV 0.00 0.00

(0.00) (0.00)
JV −0.06

(0.25)
IV 0.03

(0.09)
Constant 0.00⋆ 0.00⋆ 0.00 0.00⋆ 0.00⋆ 0.00 0.00

(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)
R2 (adj %) 9.41 22.02 29.34 28.28 28.91 29.47 29.49
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