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Abstract

Our survey will explore possible explanations for the divergence between the objective and the risk-

neutral distributions. Modeling of the dynamics of the underlying asset price is an important part

of the puzzle, while another essential element is the existence of time-varying risk premia. The last

issue stresses the potentially explicit role to be played by preferences in the pricing of options, a

departure from the central tenet of the preference-free paradigm. An important issue for option

pricing is whether or not the models deliver closed-form solutions. We will therefore discuss if and

when there exists a trade-off between obtaining a good empirical fit or a closed-form option pricing

formula. The price of a derivative security is determined by the risk factors affecting the dynamic

process of the underlying asset. We start the survey with discrete timemodels based on the key notion

of stochastic discount factor. The analysis in Section 2 allows us to discussmany issues, both theoretical

and empirical in a relatively simple and transparent setting. Sections 3 and 4 deal with continuous time

processes. Section 3 is devoted to the subject of modeling the so-called objective probability measure,

and Section 4 discusses how to recover risk-neutral probability densities in a parametric continuous

time setting. Nonparametric approaches to pricing, hedging and recovering state price densities are

reviewed in Section 5.

Keywords: stock price dynamics; multivariate jump-diffusion models; latent variables; stochastic

volatility; objective and risk-neutral distributions; nonparametric option pricing; discrete-time option

pricing models; risk-neutral valuation; preference-free option pricing.

1. INTRODUCTION ANDOVERVIEW
To delimit the focus of this survey, we will put emphasis on the more recent contri-
butions because there are already a number of surveys that cover the earlier literature.
For example, Bates (1996b) wrote an excellent review, discussing many issues involved
in testing option pricing models. Ghysels et al. (1996) and Shephard (1996) provide a
detailed analysis of stochastic volatility (SV) modeling, whereas Renault (1997) explores
the econometric modeling of option pricing errors. More recently, Sundaresan (2000)
surveys the performance of continuous-time methods for option valuation.The material
we cover obviously has many seminal contributions that predate the most recent work.
Needless to say that due credit will be given to the seminal contributions related to
the general topic of estimating and testing option pricing models. A last introductory
word of caution: our survey deals almost exclusively with studies that have considered
modeling the return process for equity indices and determining the price of European
options written on this index.

One of the main advances that marked the econometrics of option pricing in the last
10 years has been the use of price data on both the underlying asset and options to jointly
estimate the parameters of the process for the underlying and the risk premia associated
with the various sources of risk. Even if important progress has been made regarding
econometric procedures, the lesson that can be drawn from the numerous investigations,
both parametric and nonparametric, in continuous time or in discrete time, is that the
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empirical performance still leaves much room for improvement. The empirical option
pricing literature has revealed a considerable divergence between the risk-neutral distri-
butions estimated from option prices after the 1987 crash and conditional distributions
estimated from time series of returns on the underlying index. Three facts clearly stand
out. First, the implied volatility extracted from at-the-money options differs substantially
from the realized volatility over the lifetime of the option. Second, risk-neutral distribu-
tions feature substantial negative skewness, which is revealed by the asymmetric implied
volatility curves when plotted against moneyness. Third, the shape of these volatility
curves changes over time and maturities; in other words, the skewness and the convexity
are time-varying and maturity-dependent. Our survey will therefore explore possible
explanations for the divergence between the objective and the risk-neutral distributions.
Modeling of the dynamics of the underlying asset price is an important part of the puz-
zle, while another essential element is the existence of time-varying risk premia.The last
issue stresses the potentially explicit role to be played by preferences in the pricing of
options, a departure from the central tenet of the preference-free paradigm.

The main approach to modeling stock returns at the time prior surveys were written
was a continuous-time SV diffusion process possibly augmented with an independent
jump process in returns. Heston (1993) proposed a SV diffusion model for which one
could derive analytically an option pricing formula. Soon thereafter, see, e.g., Duffie
and Kan (1996), it was realized that Heston’s model belonged to a rich class of affine
jump-diffusion (AJD) processes for which one could obtain similar results. Duffie et al.
(2000) discuss equity and fixed income derivatives pricing for the general class of AJD.
The evidence regarding the empirical fit of the affine class of processes is mixed, see,
e.g., Dai and Singleton (2000), Chernov et al. (2003), and Ghysels and Ng (1998) for
further discussion. There is a consensus that single volatility factor models, affine (like
Heston, 1993) or nonaffine (like Hull and White, 1987 or Wiggins, 1987), do not fit the
data (see Andersen et al., 2010; Benzoni, 1998; Chernov et al., 2003; Pan, 2002, among
others). How to expand single volatility factor diffusions to mimic the data generating
process remains unsettled. Several authors augmented affine SV diffusions with jumps
(see Andersen et al., 2001; Bates, 1996a; Chernov et al., 2003; Eraker et al., 2003; Pan,
2002, among others). Bakshi et al. (1997), Bates (2000), Chernov et al. (2003), and Pan
(2002) show, however, that SV models with jumps in returns are not able to capture
all the empirical features of observed option prices and returns. Bates (2000) and Pan
(2002) argue that the specification of the volatility process should include jumps,possibly
correlated with the jumps in returns. Chernov et al. (2003) maintain that a two-factor
nonaffine logarithmic SV diffusion model without jumps yields a superior empirical fit
compared with affine one-factor or two-factor SV processes or SV diffusions with jumps.
Alternative models were also proposed: they include volatility models of the Ornstein–
Uhlenbeck type but with Lévy innovations (Barndorff-Nielsen and Shephard,2001) and
SV models with long memory in volatility (Breidt et al.,1998;Comte and Renault,1998).
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The statistical fit of the underlying process and the econometric complexities associated
with it should not be the only concern,however.An important issue for option pricing is
whether or not the models deliver closed-form solutions.We will therefore discuss if and
when there exists a trade-off between obtaining a good empirical fit or a closed-form
option pricing formula. The dynamics of the underlying fundamental asset cannot be
related to option prices without additional assumptions or information. One possibility is
to assume that the risks associated with SV or jumps are idiosyncratic and not priced by the
market.There is a long tradition of this, but more recent empirical work clearly indicates
there are prices for volatility and jump risk (see, e.g.,Andersen et al., 2010; Chernov and
Ghysels, 2000; Jones, 2003;Pan,2002, among others). One can simply set values for these
premia and use the objective parameters to derive implications for option prices as in
Andersen et al. (2001).A more informative exercise is to use option prices to calibrate the
parameters under the risk-neutral process given some version of a nonlinear least-squares
procedure as in Bakshi et al. (1997) and Bates (2000). An even more ambitious program
is to use both the time series data on stock returns and the panel data on option prices to
characterize the dynamics of returns with SV and with or without jumps as in Chernov
and Ghysels (2000), Pan (2002), Poteshman (2000), and Garcia et al. (2009).

Whether one estimates the objective probability distribution, the risk neutral, or both,
there are many challenges in estimating the parameters of diffusions. The presence of
latent volatility factors makes maximum likelihood estimation computationally infeasible.
This is the area where probably the most progress has been made in the last few years.
Several methods have been designed for the estimation of continuous-time dynamic
state-variable models with the pricing of options as a major application. Simulation-
based methods have been most successful in terms of empirical implementations, which
will be reviewed in this chapter.

Nonparametric methods have also been used extensively. Several studies aimed at
recovering the risk-neutral probabilities or state-price densities implicit in option or stock
prices. For instance, Rubinstein (1996) proposed an implied binomial tree methodology
to recover risk-neutral probabilities, which are consistent with a cross-section of option
prices. An important issue with the model-free nonparametric approaches is that the
recovered risk-neutral probabilities are not always positive and one may consider adding
constraints on the pricing function or the state-price densities.

Bates (2000), among others, shows that risk-neutral distributions recovered from
option prices before and after the crash of 1987 are fundamentally different, whereas
the objective distributions do not show such structural changes. Before the crash, both
the risk-neutral and the actual distributions look roughly lognormal. After the crash, the
risk-neutral distribution is left skewed and leptokurtic. A possible explanation for the
difference is a large change in the risk aversion of the average investor. Because risk
aversion can be recovered empirically from the risk-neutral and the actual distributions,
Aït-Sahalia and Lo (2000), Jackwerth (2000), and Rosenberg and Engle (2002) estimate
preferences for the representative investor using simultaneously S&P500 returns and
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options prices for contracts on the index. Preferences are recovered based on distance
criteria between the model risk-neutral distribution and the risk-neutral distribution
implied by option price data.

Another approach of recovering preferences is to set up a representative agent model
and estimate the preference parameters from the first-order conditions using a generalized
method of moments (GMM) approach. Although this has been extensively done with
stock and Treasury bill return data (see Epstein and Zin, 1991; Hansen and Singleton,
1982,among others), it is only more recently that Garcia et al. (2003) estimated preference
parameters in a recursive utility framework using option prices. In this survey, we will
discuss under which statistical framework option pricing formulas are preference-free
and risk-neutral valuation relationships (RNVRs) (Brennan, 1979) hold in a general
stochastic discount factor (SDF) framework (Hansen and Richard, 1987). When these
statistical restrictions do not hold, it will be shown that preferences play a role. Bates
(2007) argues that the overall industrial organization of the stock index option markets
is not compatible with the idealized construct of a representative agent. He therefore
proposes an equilibrium analysis with investor heterogeneity.

Apart from statistical model fitting, there are a host of other issues pertaining to the
implementation of models in practice. A survey by Bates (2003) provides an overview
of the issues involved in empirical option pricing, especially the questions surrounding
data selection, estimation or calibration of the model, and presentation of results.

The price of a derivative security is determined by the risk factors affecting the dynamic
process of the underlying asset.We start the survey with discrete time models based on the
key notion of SDF.The analysis in Section 2 allows us to discuss many issues, both theo-
retical and empirical in a relatively simple and transparent setting. Sections 3 and 4 deal
with continuous-time processes. Section 3 is devoted to the subject of modeling the so-
called objective probability measure, and Section 4 discusses how to recover risk-neutral
probability densities in a parametric continuous-time setting. Nonparametric approaches
to pricing, hedging, and recovering state price densities are reviewed in Section 5.

2. PRICING KERNELS, RISK-NEUTRAL PROBABILITIES, ANDOPTION
PRICING

The widespread acceptance among academics and investment professionals of the Black–
Scholes (BS) option pricing formula as a benchmark is undoubtedly due to its usefulness
for pricing and hedging options, irrespective of the unrealistic assumptions of the initial
model.The purpose of econometrics of option pricing is not really to check the empirical
validity of this model. It has been widely documented that by contrast with maintained
assumptions of Black and Scholes geometric Brownian motion model, stock return
exhibits both stochastic volatility and jumps.Thus, the interesting issue is not the validity
of the model itself. In this section, we will rather set the focus on the assessment of the
possible errors of the BS option pricing formula and on empirically successful strategies
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to alleviate them.After all,we can get the right pricing and hedging formula with a wrong
model. This is the reason why the largest part of this section is focused on econometric
modeling and inference about empirically valid extensions of the BS option pricing
formula.

However, it is worth stressing even more generally the econometric content of arbi-
trage pricing. As first emphasized by Cox et al. (1979), there is a message of the Black
and Scholes approach which goes beyond any particular specification of the underlying
stochastic processes. Arbitrage-free pricing models generally allow to interpret deriva-
tive prices as expectations of discounted payoffs, when expectations are computed with
respect to an equivalent martingale measure. It is worth stressing in this respect a nice
correspondence between the theory of arbitrage pricing and econometrics of option
pricing. Although option contracts are useful to complete the markets and so to get an
unique equivalent martingale measure, the statistical observation of option prices is gen-
erally informative about the underlying equivalent martingale measure. Although only
the historical probability distribution can be estimated from return data on the underlying
asset, option prices data allow the econometrician to perform some statistical inference
about the relevant martingale measure. This will be the main focus of interest of this
chapter. For sake of expositional simplicity, as in Black and Scholes (1972) first empirical
tests of their option pricing approach, the option contracts considered in this chapter
will be mainly European calls written on stocks. Of course, in the same way, BS option
pricing methodology has since been generalized to pricing of many other derivative
securities, the econometric approaches sketched below can be extended accordingly.

2.1. Equivalent Martingale Measure and Volatility Smile
Assume that all stochastic processes of interest are adapted in a filtered probability space
(�, (Ft), P). Under standard regularity conditions, the absence of arbitrage is equivalent
to the existence of an equivalent martingale measure Q. Without loss of generality, we
will consider throughout that the payoffs of options of interest are attainable (see, e.g.,
Föllmer and Schied, 2004). Then, the arbitrage-free price of these options is defined
without ambiguity as expectation under the probability measure Q of the discounted
value of their payoff. Moreover, for an European call with maturity T , we will rather
characterize its arbitrage price at time t < T as the discounted value at time t of its
expectation under the time t forward measure Qt,T for time T . By Bayes rule, Qt,T
is straightforwardly defined as equivalent to the restriction of Q on Ft . The density
function dQt,T /dQ is [B(t, T )]−1(Bt/BT ), where Bt stands for the value at time t of
a bank account, whereas B(t, T ) is the time t price of a pure discount bond (with unit
face value) maturing at time T . If K and St denote, respectively, the strike price and the
price a time t of the underlying stock, the option price Ct a time t is

Ct = B(t, T )EQt,T Max[0, ST − K ]. (2.1)



The Econometrics of Option Pricing 485

A formula such (2.1) provides a decomposition of the option price into two components:

Ct = St�1t − K�2t , (2.2)

where

�2t = B(t, T )Qt,T [ST ≥ K ] (2.3)

and

�1t = �2tEQt,T

[
ST

St
| ST ≥ K

]
(2.4)

It follows immediately (see Huang and Litzenberger, 1998, pp. 140, 169) that

�2t = −∂Ct

∂K
(2.5)

In other words, a cross-section at time t of European call option prices all maturing at
time T , but with different strike prices, K is informative about the pricing probability
measure Qt,T . In the limit, a continuous observation of the function K −→ Ct (or of
its partial derivative ∂Ct/∂K ) would completely characterize the cumulative distribution
function of the underlying asset return (ST /St) under Qt,T . Let us rather consider it
through the probability distribution of the continuously compounded net return on the
period [t, T ]:

rS(t, T ) = log
[

ST B(t, T )

St

]
With (log-forward) moneyness of the option measured by

xt = log
[

KB(t, T )

St

]
,

the probability distribution under Qt,T of the net return on the stock rS(t, T ) is
characterized by its survival function deduced from (2.3) and (2.5) as

Gt,T (xt) = −exp(−xt)
∂Ct

∂xt
, (2.6)

where

Ct(xt) = Ct

St
= EQt,T {Max[0, exp(rS(t, T ))− exp(xt)]}. (2.7)
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For the purpose of easy assessment of suitably normalized orders of magnitude, prac-
titioners often prefer to plot as a function of moneyness xt the BS-implied volatility
σ

imp
t,T (xt) rather than the option price Ct(xt) itself. The key reason that makes this sen-

sible is that in the Black and Scholes model, the pricing distribution is indexed by a
single volatility parameter σ. Under BS’ assumptions, the probability distribution of the
net return rS(t, T ) under Qt,T is the normal with mean (−1/2)(T − t)σ2 and variance
(T − t)σ2. Let us denote ℵt,T (σ) this distribution.

Then, the BS-implied volatility σ imp
T−t(xt) is defined as the value of the volatility param-

eter σ2, which would generate the observed option price C(xt) as if the distribution of
net return under Qt,T was the normal ℵt,T (σ). In other words,σ imp

T−t(xt) is characterized
as solution of the equation:

Ct(xt) = BSh[xt , σ
imp
h (xt)] (2.8)

where h = T − t and

BSh[x, σ] = N [d1(x, σ, h)] − exp(x)N [d2(x, σ, h)], (2.9)

where N is the cumulative distribution function of the standardized normal and

d1(x, σ, h) = −x

σ
√

h
+ 1

2
hσ2

d2(x, σ, h) = −x

σ
√

h
− 1

2
hσ2.

It is worth reminding that the common use of the BS-implied volatility σ imp
h (xt) by no

mean implies that people think that the BS model is well specified. By (2.8), σ imp
h (xt)

is nothing but a known strictly increasing function of the observed option price Ct(xt).
When plotting the volatility smile as a function xt −→ σ

imp
h (xt) rather than xt −→

Ct(xt), people simply consider a convenient rescaling of the characterization (2.6) of the
pricing distribution. However, this rescaling depends on xt and, by definition, produces
a flat volatility smile whenever the BS pricing formula is valid in cross-section (for all
moneynesses at a given maturity) for some specific value of the volatility parameter. Note
that the validity of the BS model itself is only a sufficient but not necessary condition
for that.

2.2. How to Graph the Smile?

When the volatility smile is not flat, its pattern obviously depends whether implied
volatility σ

imp
h (xt) is plot against strike K , moneyness (K/St), forward moneyness

(KB(t, T )/St) = exp(xt), log-forward moneyness xt , etc.The optimal variable choice of
course depends on what kind of information people expect to be revealed immediately
when plotting implied volatilities.The common terminology “volatility smile” seems to
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suggest that people had initially in mind a kind of U-shaped pattern, whereas words like
“smirk”or “frown” suggest that the focus is set on frequently observed asymmetries with
respect to a symmetric benchmark. Even more explicitly, because the volatility smile is
supposed to reveal the underlying pricing probability measure Qt,T , a common wisdom
is that asymmetries observed in the volatility smile reveal a corresponding skewness in
the distribution of (log) return under Qt,T . Note in particular that as mentioned above,
a flat volatility smile at level σ characterizes a normal distribution with mean (−σ2/2)
and variance σ2.

Beyond the flat case, the common belief of a tight connection between smile asymme-
tries and risk-neutral skewness requires further qualification. First, the choice of variable
must of course matter for discussion of smile asymmetries. We will argue below that
log-forward moneyness xt is the right choice, i.e., the smile asymmetry issue must be
understood as a violation of the identity

σ
imp
h (xt) = σ

imp
h (−xt). (2.10)

This identity is actually necessary and sufficient to deduce from (2.8) that the general
option pricing formula (2.7) fulfills the same kind of symmetry property than the Black
and Scholes one:

Ct(x) = 1− exp(x)+ exp(x)Ct(−x). (2.11)

Although (2.11) is automatically fulfilled when Ct(x) = BSh[x, σ] [by the symmetry
property of the normal distribution:N (−d) = 1−N (d)], it characterizes the symmetry
property of the forward measure that corresponds to volatility smile symmetry. It actually
mimics the symmetry property of the normal distribution with mean (−σ2/2) and
variance σ2, which would prevail in case of validity of the Black and Scholes model.
By differentiation of (2.11) and comparison with (2.6), it can be easily checked that the
volatility smile is symmetric in the sense of (2.10) if and only if,when ft,T stands for the probability
density function of the log-return rS(t, T ) under the forward measure Qt,T , exp(x/2) ft,T (x) is
an even function of x.

In conclusion, the relevant concept of symmetry amounts to consider pairs of
moneynesses that are symmetric of each other in the following sense:

x1t = log
[

K1B(t, T )

St

]
= −x2t = log

[
St

K2B(t, T )

]
.

In other words, the geometric mean of the two discounted strike prices coincides with
the current stock price: √

K1B(t, T )
√

K2B(t, T ) = St .
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To conclude, it is worth noting that graphing the smile as a function of the log-moneyness
xt is even more relevant when one maintains the natural assumption that option prices are
homogeneous functions of degree one with respect to the pair (St , K ). Merton (1973)
had advocated this homogeneity property to preclude any “perverse local concavity” of
the option price with respect to the stock price. It is obvious from (2.7) that a sufficient
condition for homogeneity is that as in the Black and Scholes case, the pricing probability
distribution Qt,T does not depend on the level St of the stock price. This is the reason
why, as discussed by Garcia and Renault (1998a), homogeneity holds with standard SV
option pricing models and does not hold for GARCH option pricing.

For our purpose, the big advantage of the homogeneity assumption is that it allows
to compare volatility smiles (for a given time to maturity) at different dates since then
the implied volatility σ

imp
h (xt) depends only on moneyness xt and not directly on the

level St of the underlying stock price. Moreover, from the Euler characterization of
homogeneity:

Ct = St
∂Ct

∂St
+ K

∂Ct

∂K

we deduce [by comparing (2.2) and (2.5)] that

�1t = ∂Ct

∂St
(2.12)

is the standard delta-hedging ratio. Note that a common practice is to compute a proxy
of �1t by plugging σ

imp
h (xt) in the BS delta ratio. Unfortunately, this approximation

suffers from a Jensen bias when the correct option price is a mixture of BS prices (see
Section 2.5) according to some probability distribution of the volatility parameter. It is
shown in Renault andTouzi (1996) and Renault (1997) that the BS delta ratio [computed
with σ imp

h (xt)] underestimates (resp. overestimates) the correct ratio�1t when the option
is in the money (resp. out of the money), i.e., when xt < 0 (resp. xt > 0).

2.3. Stochastic Discount Factors and Pricing Kernels

Since Harrison and Kreps (1979), the so-called “fundamental theorem of asset pricing”
relates the absence of arbitrage opportunity on financial markets to the existence of
equivalent martingale measures.

The market model is arbitrage-free if and only if the set of all equivalent martin-
gale measures is nonempty. It is a mild version of the old “efficient market hypothesis”
that states that discounted prices should obey the fair game rule, i.e., to behave as mar-
tingales. Although Lucas (1978) had clearly shown that efficiency should not preclude
risk-compensation, the notion of equivalent martingale measures reconciles the points
of view. The martingale property and associated “risk-neutral pricing” is recovered for
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some distortion of the historical probability measure that encapsulates risk compen-
sation. This distortion preserves “equivalence” by ensuring the existence of a strictly
positive probability density function.

For the purpose of econometric inference, the concept of risk-neutral pricing may
be less well suited because the characterization of a valid equivalent martingale mea-
sure depends in a complicated way of the time-span, the frequency of transactions, the
filtration of information, and the list of primitive assets involved in self-financing strate-
gies. Following Lucas (1978) and more generally the rational expectations literature, the
econometrician rather sets the focus on investors’ decisions at every given date, presum-
ing that they know the true probability distributions over states of the world. In general,
investors’ information will be limited so that the true state of the world is not revealed to
them at any point of time. Econometrician’s information is even more limited and will
always be viewed as a subset of investors’ information.This is the reason why Hansen and
Richard (1987) have revisited Harrison and Kreps (1979) Hilbert space methods to allow
flexible conditioning on well-suited information sets. In a way, the change of probability
measure is then introduced for a given date of investment and a given horizon, similarly
to the forward equivalent measure.

The equivalent martingale measure approach allows to show the existence at any given
date t and for any maturity date T > t of an equivalent forward measure Qt,T such that
the price πt at time t of a future payoff gT available at time T is

πt = B(t, T )EQt,T [ gT | (Ft)]. (2.13)

Similarly, Hansen and Richard (1987) directly prove the existence of a strictly positive
random variable Mt,T such that

πt = Et[Mt,T gT ], (2.14)

where the generic notation Et{.} is used to denote the historical conditional expectation,
given a market-wide information set about which we do not want to be specific. Up to
this degree of freedom, there is basically no difference between pricing equations (2.13)
and (2.14). First note that (2.14), valid for any payoff, determines in particular the price
B(t, T ) of a pure discount bond that delivers $1 at time T :

B(t, T ) = Et[Mt,T ]. (2.15)

The discount factor in (2.13), equal to B(t, T ), is also the conditional expectation at
time t of any variable Mt,T conformable to (2.14). Such a variable is called a SDF.Thus,
Mt,T

B(t,T )
is a probability density function that directly defines a forward measure from the

historical measure. By contrast, a forward measure is usually defined in mathematical
finance from its density with respect to an equivalent martingale measure. The latter
involves the specification of the locally risk free spot rate. However, it is not surprising
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to observe that the issue of market incompleteness which is detrimental in mathematical
finance due to the nonuniqueness of an equivalent martingale measure will also affect
the econometric methodology of SDF pricing.

In the rest of this section, we discuss the properties of the SDF while overlooking the
issue of its lack of uniqueness. It is first worth reminding the economic interpretation
of the SDF. With obvious notations, plugging (2.15) into (2.14) allows to rewrite the
latter as

B(t, T )Et(Rt,T ) = 1− covt
[
Rt,T , Mt,T

]
, (2.16)

where Rt,T = gT
πt

denotes the return over the period [t, T ] on the risky asset with
terminal payoff gT . In other words, the random features of the discounted risky return
B(t, T )Rt,T allow a positive risk premium (a discounted expected return larger than 1)
in proportion of its covariance with the opposite of the SDF.

In the same way, the Bayes rule leads to see risk-neutral densities as multiplicative
functionals over aggregated consecutive periods, and we must see the SDF as produced
by the relative increments of an underlying pricing kernel process. Let τ < T be an
intermediate trading date between dates t and T . The time T payoff gT could be pur-
chased at date t, or it could be purchased at date τ with a prior date t purchase of a claim
to the date τ purchase price. The “law of one price” guarantees that these two ways to
acquire the payoff gT must have the same initial cost. This recursion argument implies a
multiplicative structure on consecutive SDFs.There exists an adapted positive stochastic
process mt called the pricing kernel process such that

Mt,T = mT

mt
. (2.17)

Following Lucas (1978), a popular example of pricing kernel is based on the consump-
tion process of a representative investor. Under suitable assumptions for preferences and
endowment shocks, it is well known that market completeness allows us to introduce a
representative investor with utility function U . Assuming that he or she can consume Ct
at date t and CT at the fixed future date T and that he or she receives a given portfolio
of financial assets as endowment at date t, the representative investor adjusts the dollar
amount invested in each component of the portfolio at each intermediary date to maxi-
mize the expected utility of his or her terminal consumption at time T . In equilibrium,
the investor optimally invests all his or her wealth in the given portfolio and then con-
sumes its terminal value CT .Thus, the Euler first-order condition for optimality imposes
that the price πt at time t of any contingent claim that delivers the dollar amount gT at
time t is such that

πt = Et

[
βT−t U ′(CT )

U ′(Ct)
gT

]
, (2.18)
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where β is the subjective discount parameter of the investor. For instance,with a constant
relative risk aversion (CRRA) specification of the utility function,U ′(C) = C−a where
a ≥ 0 is the Arrow-Pratt measure of relative risk aversion, and we have the consumption-
based pricing-kernel process:

mt = βtC−a
t . (2.19)

2.4. Black–Scholes-Implied Volatility as a Calibrated Parameter
It is convenient to rewrite the call pricing equation (2.1) in terms of pricing kernel:

Ct = Et

[
mT

mt
Max[0, ST − K ]

]
. (2.20)

It is then easy to check that the call pricing formula collapses into the BS one when the
two following conditions are fulfilled:

• The conditional distribution given Ft of the log-return log
[

ST
St

]
is normal with

constant variance σ and
• The log-pricing kernel log(mT

mt
) is perfectly correlated to the log-return on the stock.

An important example of such a perfect correlation is the consumption-based pricing
kernel described above when the investor’s initial endowment is only one share of the
stock such that he or she consumes the terminal value ST = CT of the stock. Then,

log
[

mT

mt

]
= −a log

[
ST

St

]
+ (T − t) log(β). (2.21)

We will get a first interesting generalization of the BS formula by considering now that
the log-return log

[ST
St

]
and the log-pricing kernel log(mt,T ) may be jointly normally

distributed given Ft , with conditional moments possibly depending on the conditional
information at time t. Interestingly enough, it can be shown that the call price com-
puted from formula (2.20) with this joint conditional lognormal distribution will depend
explicitly on the conditional moments only through the conditional stock volatility:

(T − t)σ2
t,T = Vart

[
log

(
ST

St

)]
More precisely, we get the following option pricing formula:

Ct = StBST−t[xt , σt,T−t]. (2.22)

The formula (2.22) is actually a generalization of the RNVR put forward by Brennan
(1979) in the particular case (2.19).With joint lognormality of return and pricing kernel,
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we are back to a Black and Scholes functional form due to the Cameron–Martin formula
(a static version of Girsanov’s theorem), which tells us that when X and Y are jointly
normal:

E
{
exp(X)g(Y )

} = E[exp(X)]E{
g[Y + cov(X , Y )]}

Although the term E[exp(X)] will give B(t, T ) [with X = log(mt,T )], the term
cov(X , Y ) (with Y = log[ST /St]) will make the risk-neutralization because E

{
exp(X)

exp(Y )
}

must be one as it equals E[exp(X)]E{
exp[Y + cov(X , Y )]}.

From an econometric viewpoint, the interest of (2.22), when compared with (2.8), is
to deliver a flat volatility smile but with an implied volatility level which may be time
varying and corresponds to the conditional variance of the conditionally lognormal stock
return. In other words, the time-varying volatility of the stock becomes observable as
calibrated from option prices:

σt,T = σ
imp
T−t(xt), ∀xt

The weakness of this approach is its lack of robustness with respect to temporal aggrega-
tion. In the GARCH-type literature,stock returns may be conditionally lognormal when
they are considered on the elementary period of the discrete time setting (T = t + 1),
whereas implied time-aggregated dynamics are more complicated.This is the reason why
the GARCH-option pricing literature (Duan,1995 and Heston and Nandi,2000) main-
tains the formula (2.22) only for T = t + 1. Nonflat volatility smiles may be observed
with longer times to maturity. Kallsen and Taqqu (1998) provide a continuous-time
interpretation of such GARCH option pricing.

2.5. Black–Scholes-Implied Volatility as an Expected Average Volatility
To account for excess kurtosis and skewness in stock log-returns,a fast empirical approach
amounts to consider that the option price a time t is given by a weighted average:

αtStBSh[xt , σ1t] + (1− αt)StBSh[xt , σ2t]. (2.23)

The rationale for (2.23) is to consider that a mixture of two normal distributions with
standard errors σ1t and σ2t and weights αt and (1− αt),respectively,may account for both
skewness and excess kurtosis in stock log-return.The problem with this naive approach is
that it does not take into account any risk premium associated to the mixture component.
More precisely, if we want to accommodate a mixture of normal distributions with a
mixing variable Ut,T , we can rewrite (2.20) as

Ct = EP{EP [
Mt,T Max[0, ST − K ] | Ft , Ut,T

] ∣∣Ft
}
, (2.24)
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where, for each possible value ut,T of Ut,T , a BS formula like (2.22) is valid to compute

EP[Mt,T Max[0, ST − K ] | Ft , Ut,T = ut,T
]
.

In other words, it is true that as in (2.23), the conditional expectation operator [given
(Ft)] in (2.24) displays the option price as a weighted average of different BS prices
with the weights corresponding to the probabilities of the possible values ut,T of the
mixing variable Ut,T . However, the naive approach (2.23) is applied in a wrong way
when forgetting that the additional conditioning information Ut,T should lead to modify
some key inputs in the BS option pricing formula. Suppose that investors are told that
the mixing variable Ut,T will take the value ut,T . Then, the current stock price would
no longer be

St = EP[Mt,T ST | Ft
]

but instead

S∗t (ut,T ) = EP[Mt,T ST | Ft , Ut,T = ut,T
]
. (2.25)

For the same reason, the pure discount bond that delivers $1 at time T will no longer
be priced at time t as

B(t, T ) = EP[Mt,T | Ft
]

but rather

B∗(t, T )(ut,T ) = EP[Mt,T | Ft , Ut,T = ut,T
]
. (2.26)

Hence, various BS option prices that are averaged in a mixture approach like (2.23)
must be computed, no longer with actual values B(t, T ) and St of the current bond
and stock prices but with values B∗(t, T )(ut,T ) and S∗t (ut,T ) not directly observed but
computed from (2.26) and (2.25). In particular, the key inputs, underlying stock price
and interest rate, should be different in various applications of the BS formulas like
BSh[x, σ1] and BSh[x, σ2] in (2.23). This remark is crucial for the conditional Monte
Carlo approach, as developed for instance in Willard (1997) in the context of option
pricing with SV. Revisiting a formula initially derived by Romano and Touzi (1997),
Willard (1997) notes that the variance reduction technique,known as conditional Monte
Carlo, can be applied even when the conditioning factor (the SV process) is instanta-
neously correlated with the stock return as it is the case when leverage effect is present.
He stresses that “by conditioning on the entire path of the noise element in the volati-
lity (instead of just the average volatility), we can still write the option’s price as an
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expectation over Black-Scholes prices by appropriately adjusting the arguments to the
Black-Scholes formula”. Willard’s (1997) “appropriate adjustment” of the stock price is
actually akin to (2.25). Moreover, he does not explicitly adjust the interest rate according
to (2.26) and works with a fixed risk-neutral distribution.The Generalized Black–Scholes
(GBS) option pricing below makes the required adjustments explicit.

2.6. Generalized Black–Scholes Option Pricing Formula
Let us specify the continuous-time dynamics of a pricing kernel Mt,T as the relative
increment of a pricing kernel process mt according to (2.17).The key idea of the mixture
model is then to define a conditioning variable Ut,T such that the pricing kernel process
and the stock price process jointly follow a bivariate geometric Brownian motion under
the historical conditional probability distribution given Ut,T . The mixing variable Ut,T
will typically show up as a function of a state variable path (Xτ)t≤τ≤T . More precisely,
we specify the jump-diffusion model

d(log St) = μ(Xt)dt + α(Xt)dW1t + β(Xt)dW2t + γtdNt (2.27)

d(log mt) = h(Xt)dt + a(Xt)dW1t + b(Xt)dW2t + ctdNt , (2.28)

where (W1t , W2t) is a two-dimensional standard Brownian motion, Nt is a Poisson
process with intensity λ(Xt) depending on the state variable Xt , and the jump sizes ct
and γt are i.i.d. independent normal variables independent of the state variable process
(Xt).The Brownian motion (W1t) is assumed to be part of the state variable vector (Xt)

to capture the possible instantaneous correlation between ex-jump volatility of the stock
[as measured by Vt = α2(Xt)+ β2(Xt)] and its Brownian innovation. More precisely,
the correlation coefficient ρ(Xt) = α(Xt)√

Vt
measures the so-called leverage effect.

The jump-diffusion model [(2.27) and (2.28)] is devised such that given the state
variables path (Xτ)t≤τ≤T as well as the number (NT −Nt) of jumps between times t
and T , the joint normality of (log ST , log mT ) is maintained. This remark allows us to
derive a GBS option pricing formula by application of (2.24) and (2.22):

Ct = StEP[ξt,T BST−t(x∗t , σt,T ) | Ft
]
, (2.29)

where

σ2
t,T =

T∫
t

[
1− ρ2(Xτ)

]
Vτdτ + (NT −Nt)Var(γt) (2.30)

and

x∗t = log
[

KB∗(t, T )

Stξt,T

]
,
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where Stξt,T and B∗(t, T ) correspond, respectively, to S∗t (ut,T ) and B∗(t, T )(ut,T )

defined in (2.25) and (2.26). General computations of these quantities in the context of
a jump-diffusion model can be found inYoon (2008). Let us exemplify these formulas
when there is no jump. Then, we can define a short-term interest rate as

r(Xt) = −h(Xt)− 1
2

[
a2(Xt)+ b2(Xt)

]
and then

B∗(t, T ) = exp

⎡⎣− T∫
t

r(Xτ)dτ

⎤⎦exp

⎡⎣ T∫
t

a(Xτ)dW1τ − 1
2

T∫
t

a2(Xτ)dτ

⎤⎦ (2.31)

and

ξt,T = exp

⎡⎣ T∫
t

[a(Xτ)+ α(Xτ)]dW1τ − 1
2

T∫
t

[a(Xτ)+ α(Xτ)]2dτ

⎤⎦. (2.32)

It may be easily checked in particular that

B(t, T ) = EP[B∗(t, T ) | Ft
]

and

St = EP[Stξt,T | Ft
]
.

Let us neglect for the moment the difference between Stξt,T and B∗(t, T ) and their
respective expectations St and B(t, T ). It is then clear that the GBS formula warrants
the interpretation of the BS-implied volatility σ imp

T−t(xt) as approximatively an expected
average volatility. Up to Jensen effects (nonlinearity of the BS formula with respect to
volatility), the GBS formula would actually give[

σ
imp
T−t(xt)

]2 = EP[σ2
t,T | Ft

]
. (2.33)

The likely impact of the difference between Stξt,T and B∗(t, T ) and their respective
expectations St and B(t, T ) is twofold. First, a nonzero function a(Xτ) must be under-
stood as a risk premium on the volatility risk. In other words, the above interpretation of
σ

imp
T−t(xt) as approximatively an expected average volatility can be maintained by using

risk-neutral expectations. Considering the BS-implied volatility as a predictor of volatil-
ity over the lifetime of the option is tantamount to neglect the volatility risk premium.
Beyond this risk premium effect, the leverage effect ρ(Xt) will distort this interpreta-
tion through its joint impact on σ2

t,T and on ξt,T as well (through α(Xt) = ρ(Xt)
√

Vt).
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Although Renault and Touzi (1996) have shown that we will get a symmetric volatility
smile in case of zero-leverage, Renault (1997) explains that with nonzero leverage, the
implied distortion of the stock price by the factor ξt,T will produce asymmetric volati-
lity smirks. Yoon (2008) characterizes more precisely the cumulated impact of the two
effects of leverage and shows that they compensate each other almost exactly for at the
money options, confirming the empirical evidence documented by Chernov (2007).
Finally, Comte and Renault (1998) long-memory volatility model explains that in spite
of the time averaging in (2.30), (2.33) the volatility smile does not become flat even for
long-term options.

It is worth stressing that the fact that Stξt,T and B∗(t, T ) may not coincide with
their respective expectations St and B(t, T ) implies that, by contrast with the standard
BS option pricing, the GBS formula is not preference free. Although in preference-free
option pricing, the preference parameters are hidden within the observed value of the
bond price and the stock price, and the explicit impact of the volatility risk premium
function a(Xt) in the formulas (2.32) and (2.31) for ξt,T and B∗(t, T ) is likely to result
in an explicit occurrence of preference parameters within the option pricing formula
(see Garcia et al., 2005, and references therein for a general discussion). Although Garcia
and Renault (1988b) characterize the respective impacts of risk aversion and elasticity
of intertemporal substitution on option prices, Garcia et al. (2003) set the focus on the
converse property. Because the impact of preference parameters on option prices should
be beyond their role in bond and stock prices, option price data are likely to be even
more informative about preference parameters. This hypothesis is strikingly confirmed
by their econometric estimation of preference parameters.

Although properly taking into account the difference between historical and risk-
neutral expectations, the tight connection [(2.30) and (2.33)] between BS-implied
volatility and the underlying volatility process (

√
Vt) has inspired a strand of litera-

ture on estimating volatility dynamics from option prices data. Pastorello et al. (2000)
consider directly [σ imp

T−t(xt)]2 as a proxy for squared spot volatility Vt and correct the
resulting approximation bias in estimating volatility dynamics by indirect inference.The
“implied-states approach”described in Section 4 uses more efficiently the exact relation-
ship between σ imp

T−t(xt) and Vt , as given by (2.29), (2.30) for a given spot volatility model,
to estimate the volatility parameters by maximum likelihood or GMM.

3. MODELING ASSET PRICE DYNAMICS VIA DIFFUSIONS FOR THE
PURPOSE OF OPTION PRICING

Because the seminal papers by Black and Scholes (1973) and Merton (1973), the greater
part of option pricing models have been based on parametric continuous-time models
for the underlying asset.The overwhelming rejection of the constant variance geometric
Brownian motion lead to a new class of SV models introduced by Hull and White
(1987) and reviewed in Ghysels et al. (1996). Although the models in the SV class are by
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now well established, there are still a number of unresolved issues about their empirical
performance.

The work by Heston (1993), who proposed a SV diffusion with an analytical option
pricing formula, was generalized by Duffie and Kan (1996) and Duffie et al. (2000) to
a rich class of AJD. This class will be reviewed in a first subsection. Alternative models,
mostly nonaffine, will be covered in the second subsection. A final subsection discusses
option pricing without estimated prices of risk.

3.1. The Affine Jump-Diffusion Class of Models
The general class of AJD models examined in detail by Duffie et al. (2000) includes as
special cases many option pricing models that have been the object of much econometric
analysis in the past few years. To describe the class of processes, consider the following
return dynamics, where d log St = dU1t with U1t is the first element of a vector process
N -dimensional Ut , which represents the continuous path diffusion component of the
return process, and the second term exp�Xt − ι represents discrete jumps, where Xt is
a N -dimensional Lévy process and ι is a vector of ones. The process Ut is governed by
the following equations:

dUt = μ(Ut , t)dt + σ(Ut , t)dWt + exp�Xt − ι, (3.1)

where the process Ut is Markovian and takes values in an open subset D of RN ,μ(y) =
�+Ky with μ : D → RN and σ(y)σ(y)′ = h +∑N

j=1 yjH ( j) where σ : D → RN×N .
Moreover, the vector � is N × 1, the matrix K is N ×N , whereas h and H are all
symmetric N ×N matrices. The process Wt is a standard Brownian motion in RN .
Although the first component of the Ut process relates to returns, the other components
Uit for i = 2, . . . , N govern either the stochastic drift or volatility of returns.1 This
setup is a general affine structure that allows for jumps in returns (affecting the first
component U1t) and the less common situation of jumps in volatility factors (affecting
the components Uit that determine volatility factors). Empirical models for equity have
at most N = 4, where the U2t affects the drift of U1t and U3t and U4t affect either the
volatility or jump intensity (see, e.g., Chernov et al., 2000, 2003). We will start with
single volatility factor models, followed by a discussion of jump diffusions and models
with multiple volatility factors.

3.1.1. Models with a Single Volatility Factor

The class is defined as the following system of stochastic differential equations:

(
dYt

dVt

)
=

(
μ

κ(θ − Vt)

)
dt +√Vt

(
1 0
ρσv

√
(1− ρ2)σv

)
dWt + ξdNt , (3.2)

1All further details regarding the regularity conditions pertaining to the Ut are discussed by Duffie et al. (2000) and therefore omitted.
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where Yt is the logarithm of the asset price St , Wt = (W1t , W2t)
′ is a vector of

independent standard Brownian motions, Nt = (N y
t , N v

t )
′ is a vector of Poisson pro-

cesses with constant arrival intensities λy and λv, and ξ = (ξy, ξv)′ is a vector of jump
sizes for returns and volatility, respectively.2 We adopt the mnemonics used by Duffie
et al. and Eraker et al. (2003): SV for SV models with no jumps in returns nor volatility
(λy = λv = 0),SVJ for SV models with jumps in returns only (λy > 0, λv = 0),and SVJJ
for SV models with jumps in returns and volatility (λy > 0, λv > 0). In SVJ, the jump
size is distributed normally, ξy ∼ N (μy, σ2

y ). The SVJJ can be split into the SVIJ model
[with independent jump arrivals in returns and volatility and independent jump sizes
ξy ∼ N (μy, σ2

y ) and ξv ∼ exp(μv)] and the SVCJ model [with contemporaneous Pois-
son jump arrivals in returns and volatility, N y

t = N v
t with arrival rate λy and correlated

sizes ξv ∼ exp(μv) and ξy|ξv ∼ N (μy + ρJ ξ
v, σ2

y )].
A number of papers have investigated the Heston (1993) SV model. Most papers

(Andersen et al., 2010; Benzoni, 1998; Eraker et al., 2003) conclude that the SV model
provides a much better fit of stock return than standard one-factor diffusions. In particular,
the strong negative correlation around −0.4 found between the volatility shocks and the
underlying stock return shocks captures well the negative skewness observed in stock
returns. However, the model is rejected because it is unable to accommodate the excess
kurtosis observed in the stock returns.3 Basically, it cannot fit the large changes in stock
prices occurring during crash-like events. In the SV model, there is a strong volatility
persistence (the estimated value for the mean reversion parameter κ is in the order
of 0.02).

Adding jumps in returns appears therefore natural because the continuous path SV
accommodates the clustered random changes in the returns volatility,whereas the discrete
Poisson jump captures the large infrequent price movements. However, jump compo-
nents are difficult to estimate and complicate the extraction of the volatility process.4

Eraker et al. (2003) propose a likelihood-based methodology using Markov Chain Monte
Carlo methods (see also Jones, 2003).Their estimation results for the period 1980–1999
show that the introduction of jumps in returns in the SVJ model has an important
downward impact on the parameters of the volatility process.The parameters for average
volatility, the volatility of volatility, and the speed of mean reversion all fall dramatically.
This is somewhat consistent with the results ofAndersen et al. (2010) when they estimate
the models from 1980 till 1996 but with less magnitude. However, in the latter study,

2A specification with βVt in the drift of the returns equation was considered by Eraker et al. (2003).This additional term was found to be
insignificant, in accordance with the findings of Andersen et al. (2001) and Pan (2002).

3Both Andersen et al. (2001) and Benzoni (1998) estimate a nonaffine specification with the log variance. The model fits slightly better
than the affine SV model, but it is still strongly rejected by the data. Jones (2003) estimates a SV model with CEV volatility dynamics,
but it generates too many extreme observations.

4For a discussion of the different types of volatility filters, see Ghysels et al. (1996) and the chapter of Gallant and Tauchen (2010) in this
Handbook.
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parameters associated with volatility change much less when the models are estimated
over a longer period (1953 to 1996). The difference between the two latter studies is
to be found in the estimates of the jump process. In Eraker et al. (2003), jumps arrive
relatively infrequently, about 1.5 jumps per year, and are typically large. The jump mean
is −2.6%, and the volatility is just over 4%. The large sizes of jumps are in contrast with
the smaller estimates (μy of zero and σy less than 2%) obtained by Andersen et al. (2010)
and Chernov et al. (2003). The introduction of jumps lowers the negative correlation
between the innovations in returns and the innovations in volatility. In all studies, the
SVJ model appears to be less misspecified than the SV model.

All econometric complexities put aside,other issues remain. Adding jumps resolve the
misfit of the kurtosis on the marginal distribution of returns, but one may suspect that the
dynamic patterns of extreme events are not particularly well captured by an independent
Poisson process. The stochastic structure of a one-factor SV model augmented with a
Poisson jump process implies that the day after a stock market crash another crash is
equally likely as the day before. In addition, the occurrence of jumps is independent
of volatility. Clearly, the independent Poisson process has unappealing properties, and
therefore, some alternative models for jumps, i.e., alternative Lévy specifications, have
been suggested. Bates (2000) estimated a class of jump-diffusions with random intensity
for the jump process,more specifically where the intensity is an affine function of the SV
component. Duffie et al. (2000) generalize this class, and Chernov et al. (2000), Eraker
et al. (2003), and Pan (2002) estimate multifactor jump-diffusion models with affine
stochastic jump intensity. The models considered by Duffie et al. are

λ(Ut) = λ0(t)+ λ1(t)Ut , (3.3)

where the process Ut is of the affine class as Vt specified in (3.2). These structures may
not be entirely suitable either to accommodate some stylized facts. Suppose one ties
the intensity to the volatility factor Vt in (3.2), meaning that high volatilities imply
high probability of a jump. This feature does not take into account an asymmetry one
observes with extreme events. For instance, the day before the 1987 stock market crash
the volatility measured by the squared return on the S&P 500 index was roughly the
same as the day after the crash. Therefore, in this case making, the intensity of a crash
a linear affine function of volatility would result in the probability of a crash the day
after Black Monday being the same as the trading day before the crash. Obviously, one
could assign a factor specific to the jump intensity and governed by an affine diffu-
sion. Hence, one adds a separate factor Ut that may be correlated with the volatility
factor Vt . Pan (2002) examines such processes and provides empirical estimates. Cher-
nov et al. (2000) and Eraker et al. (2003) consider also a slightly more general class of
processes:

λ(x, U ) = λ0(x, t)+ λ1(x, t)Ut , (3.4)
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where for instance λi(x, t) = λi(t) exp(G(x)). This specification yields a class of jump
Lévy measures which combines the features of jump intensities depending on, say volatil-
ity, as well as the size of the previous jump. The virtue of the alternative more complex
specifications is that the jump process is no longer independent of the volatility process,
and extreme events are more likely during volatile market conditions.There is, however,
an obvious drawback to the introduction of more complex Lévy measures,as they involve
a much more complex parametric structure.Take, e.g., the case where the jump intensity
in (3.3) is a function of a separate stochastic factor Ut correlated with the volatility process
Vt . Such a specification may involve up to six additional parameters to determine the
jump intensity, without specifying the size distribution of jump. Chernov et al. (2000)
endeavor into the estimation of various complex jump processes using more than a 100
years of daily Dow Jones data and find that it is not possible to estimate rich parametric
specifications for jumps eve with such long data sets.5

Despite all these reservations about jump processes,one has to note that various papers
have not only examined the econometric estimation but also the derivative security
pricing with such processes. In particular, Bakshi and Madan (2000) and Duffie et al.
(2000) provide very elegant general discussions of the class of AJDs with SV, which yield
analytic solutions to derivative security pricing. One has nevertheless to bear in mind
the empirical issues that are involved. A good example is the affine diffusion with jumps.
In such a model, there is a price of jump risk and a price of risk for jump size, in addition
to the continuous path volatility factor risk price and return risk. Hence, there are many
risk prices to be specified in such models. Moreover, complex specifications of the jump
process with state-dependent jump intensity result in an even larger number of prices
of risk.

3.1.2. Multiple Volatility Factors

Affine diffusion models are characterized by drift and variance functions, which are
linear functions of the factors. Instead of considering additional factors that govern jump
intensities, one might think of adding more continuous path volatility factors. Dai and
Singleton (2000) discuss the most general specification of such models including the
identification and admissibility conditions. Let us reconsider the specification of Vt in
(3.2) and add a stochastic factor to the drift of returns, namely

dYt = (α10 + α12U1t)dt +√
β10 + β12U2t + β13U3t(dW1t + ψ12dW2t + ψ13dW3t)

dU1t = (α20 + α22U1t)dt + β20dW2t (3.5)

dUit = (αi0 + αiiUit)dt +√
βi0 + βiiUitdWit , i = 2, 3.

5Chernov et al. (2000) also examine nonaffine Lévy processes, which will be covered in the next subsection.
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The volatility factors enter additively into the diffusion component specification. Hence,
they could be interpreted as short- and long-memory components as in Engle and Lee
(1999).The long-memory (persistent) component should be responsible for the main part
of the returns distribution,whereas the short-memory component will accommodate the
extreme observations.This specification allows feedback, in the sense that the volatilities
of the volatility factors can be high via the terms βiiUit when the volatility factors
themselves are high. Adding a second volatility factor helps fitting the kurtosis, using
arguments similar to those that explain why jumps help fitting the tails.The extra freedom
to fit tails provided by an extra volatility factor has its limitations, however, as noted by
Chernov et al. (2003). In fact, their best model, which does fit the data at conventional
levels, is not an affine model (see next subsection).

Bates (2000) and Pan (2002) argue that the specification of the volatility process
should include jumps,possibly correlated with the jumps in returns.This is an alternative
to expanding the number of volatility factors. It has the advantage that one can fit the
persistence in volatility through a regular affine specification of Vt and have extreme
shocks to volatility as well through the jumps, hence capturing in a single volatility
process enough rich features that simultaneously fit the clustering of volatility and the
tails of returns.The drawback is that one has to identify jumps in volatility, a task certainly
not easier than identifying jumps in returns.

3.2. Other Continuous-Time Processes
By other continuous-time processes, we mean a large class of processes that are either
nonaffine or affine but do not involve the usual jump-diffusion processes but more
general Lévy processes or fractional Brownian motions. Three subsections describe the
various models that have been suggested.

3.2.1. Nonaffine Index Models

Another way to capture the small and large movements in returns is to specify SV models
with two factors as in Chernov et al. (2003). They propose to replace the affine setup
(3.5) by some general volatility index function σ(U2t , U3t) able to disentangle the effects
of U2t and U3t separately and therefore have a different effect of short- and long-memory
volatility components. In particular, they consider

σ(U2t , U3t) = exp(β10 + β12U2t + β13U3t) (3.6)

dUit = (αi0 + αiiUit) dt + (βi0 + βiiUit) dWit , i = 2, 3 (3.7)

Chernov et al. (2003) study two different flavors of the logarithmic models, depending
on the value of the coefficients βii. When βii = 0, the volatility factors are described
by Ornstein–Uhlenbeck processes. In this case, the drift and variance of these factors
are linear functions, and hence, the model can be described as logarithmic or log-affine.
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Whenever, βii �= 0 either for i = 2 or for i = 3, there is feedback, a feature found to
be important in Gallant et al. (1999) and Jones (2003). The exponential specification in
(3.6) is of course not the only index function one can consider.

Chernov et al. (2003) show that the exponential specification with two volatility
factors (without jumps) yields a remarkably good empirical fit, i.e., the model is not
rejected at conventional significance levels unlike the jump-diffusion and affine two-
factor models discussed in the previous section. Others have also found that such processes
fit very well, see for instance Alizadeh et al. (2002), Chacko andViceira (1999), Gallant
et al. (1999), and the two-factor GARCH model of Engle and Lee (1999).The fact that
logarithmic volatility factors are used,instead of the affine specification,adds the flexibility
of state-dependent volatility as noted by Jones (2003). In addition, an appealing feature
of the logarithmic specification is the multiplicative effect of volatility factors on returns.
One volatility factor takes care of long memory, whereas the second factor is fast mean-
reverting (but not a spike like a jump). This property of logarithmic models facilitates
mimicking the very short-lived but erratic extreme event behavior through the second
volatility factor. Neither one volatility factor models with jumps nor affine two-factor
specifications are well equipped to handle such patterns typically found during financial
crises.

It should also be noted that the two-factor logarithmic specification avoids several
econometric issues. We noted that the presence of jumps also considerably complicates
the extraction of the latent volatility and jump components because traditional filters no
longer apply. In contrast, the continuous path two-factor logarithmic SV process does not
pose any difficulties for filtering via reprojection methods as shown by Chernov et al.
(2003). There is another appealing property to the two-factor logarithmic SV model:
the model has a smaller number of risk factors compared to many of the alternative
specifications, specifically those involving complex jump process features. The major
drawback of this class of processes, however, is the lack of an explicit option pricing
formula: simulation-based option pricing is the only approach available.

3.2.2. Lévy Processes and Time Deformation

It was noted before that one could easily relax normality in discrete time models through
the introduction of mixture distributions. Likewise, in the context of continuous-time
models, it was noted that one can replace Brownian motions by so-called Lévy pro-
cesses. The typical setup is through subordination, also referred to as time deformation,
an approach suggested first in the context of asset pricing by Clark (1973) and used
subsequently in various settings. The idea to use a Lévy process to change time scales
and thus random changes in volatility can be interpreted as a clock ticking at the speed
of information arrival in the market. For further discussion, see, e.g., Barndorff-Nielsen
and Shephard (2001), Clark (1973), Ghysels et al. (1997), Madan and Seneta (1990), and
Tauchen and Pitts (1983), among many others.
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The purpose of this section is to survey the option pricing implications of assuming
the broader class of time deformed Lévy processes.Various authors have studied option
pricing with this class of processes, including Carr et al. (2003), Carr andWu (2004), and
Nicolato andVenardos (2003). The latter follow closely the setup of Barndorff-Nielsen
and Shephard, which we adopt here as well. We already introduced in Eq. (3.1) the
class of affine jump-diffusion processes. Nicolato andVenardos consider a different class,
namely

dYt = (μ+ βσ2
t )dt + σtdWt + ρdZλt (3.8)

dσt = −δσ2
t dt + dZδt (3.9)

with δ > 0 and ρ ≤ 0.The process Z = (Zδt) is subordinator, independent of the Brow-
nian motion Wt , assumed to be a Lévy process with positive increments, and called
by Barndorff-Nielsen and Shephard (2001) the background driving Lévy process. It is
assumed that Z has no deterministic drift and its Lévy measure has a density λ. Note
that the solution to (3.9) can be written as

σ2
t = exp−δtσ2

0 +
t∫

0

exp t − sdZδs. (3.10)

The resulting dynamics of the stock price process are

dSt = St−(btdt + σt + dMt)

dbt = μ+ δκ(ρ)+]
(
β + 1

2

)
σ2

t (3.11)

Mt =
∑

0<s≤t

(exp ρ�Zδs − 1)− δκ(ρ)t,

where κ(x) is the cumulant transform, i.e., κ(x) = log E[exp xZ1]. To build models of
time deformation, one exploits the property (see, e.g., Sato, 1999) that for any self-
decomposable probability distribution L there exists a Lévy process Z such that the a
OU process driven by Z has L as marginal. Examples of self-decomposable distributions
are the inverse Gaussian and Gamma distributions. Therefore, two popular models to
specify the variance process are the so-called IG −OU and %−OU processes studied,
respectively, by Barndorff-Nielsen and Shephard (2001) and Madan and Seneta (1990).

The characteristic functions for the log of price can be derived in all the aforemen-
tioned cases and can be used to obtain option prices via the Fast Fourier transform.
Equivalent martingale representations are obtained through measure changes within the
class of OU process driven by Z . One interesting case that we would like to highlight
is obtained by Nicolato andVenardos (2003), who express the call price of a European
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option as conditional expectation of the BS formula using so-called effective log-stock
prices, namely

πh
t = EQ∗[BS(Yeff , Veff )|Yt , σ2

t
]

(3.12)

similar to an expression of Hull andWhite (1987) and similar to the GSB discussed earlier,
except that here (as in Hull and White) the expectation is taken under the risk-neutral
expectation. The effective log-price process Xeff is the original process Xt modified by
the path of the future subordinator (ZδT − Zδt where T is the maturity date of the
contract) and Veff is the (re-scaled) future realized volatility between t and T . Because
of the processes involved, this formula applies to a wide variety of nonaffine diffusions
with leverage as well as jump-diffusions. To compute actual option prices, Nicolato
and Venardos (2003) suggest to simulate the pair (Yeff , Veff ) and provide the relevant
references to do so.

The observation that asset prices actually display many small jumps on a fine time scale
has led to the development of more general jump structures, which permit an infinite
number of jumps to occur within any finite time interval. Examples of infinite activity
jump models include the inverse Gaussian model of Barndorff-Nielsen (1998, 2001), the
generalized hyperbolic class of Eberlein et al. (1998), the variance gamma (VG) model of
Madan and Milne (1991), the generalization of VG in Carr et al. (2003), and the finite
moment log-stable model of Carr and Wu (2003). Empirical work by these authors is
generally supportive of the use of infinite-activity processes as a way to model returns
in a parsimonious way. The recognition that volatility is stochastic has led to further
extensions of infinite activity Lévy models by Barndorff-Nielsen and Shephard (2001)
and by Carr et al. (2003). However, these models often assume that changes in volatility
are independent of asset returns and consider the leverage effect only under special
cases. Carr andWu (2004) use time-changed Lévy processes which generalize the affine
Poisson jump-diffusions by relaxing the affine structure and by allowing more general
specifications of the jump structure. Since the pioneering work by Heston (1993), the
literature has used the characteristic function for deriving option prices. Accordingly,
Carr and Wu focus on developing analytic expressions for the characteristic function
of a time-changed Lévy process. Carr et al. (2003) construct option prices differently,
following a method developed in Carr and Madan (1998) using a generalized Fourier
transforms and parameters calibrated with cross-sections of option contracts.

To conclude, it should be noted that much has been written on testing for jumps in
the context of high-frequency financial data, see for instance Andersen et al. (2010) in
this Handbook as well as the survey by Brockwell (2009) and Eberlein (2009).

3.2.3. Long-Memory in Continuous Time

In Section 2, we noted that numerous distorted smiles in the shapes of smirks or frowns
are often inferred from market data since 1987 and provide an explanation in terms of
SV and its instantaneous correlation with the return of the underlying asset. However, as
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pointed out by Sundaresan (2000) in his survey of the performance of continuous-time
methods for option valuation, the remaining puzzle is the so-called term structure of
volatility smiles, i.e., the fact that the volatility smile effect appears to be dependent, in
a systematic way, on the maturity structure of options. Sundaresan (2000) first observes
that the volatility smile appears to be stronger in short-term options than in long-term
ones, which is consistent with the SV interpretation. When volatility is stochastic, the
option price appears to be an expectation of the BS price with respect to the probability
distribution of the so-called integrated volatility (1/h)

∫ t+h
t σ2(u)du over the lifetime of

the option (see Renault and Touzi, 1996, in the context of the Hull and White, 1987,
model) or of a fraction of it in case of leverage effect (see Romano and Touzi, 1997, in
the context of the Heston,1993,model).Then,by a simple application of the law of large
numbers to time averages of the volatility process (assumed to be stationary and ergodic),
one realizes that the effects of the randomness of the volatility should vanish when the
time to maturity of the option increases and therefore the volatility smile should be erased.

Nevertheless, as Sundaresan (2000) emphasizes, the term structure of implied volatil-
ities still appears to have short-term and long-term patterns that cannot be so easily
reconciled. Introducing long memory in the SV process appears to be useful in this
respect. To see this, it is worth revisiting the common claim that the convexity of the
volatility smile is produced by the unconditional excess kurtosis of log returns. For nota-
tional simplicity,we consider that the log price has a zero deterministic drift and that there
is no leverage effect, i.e., using the notations of Subsection 2.7; the twoWiener processes
W S and W X are independent,and the log return over the period [t, t + h] can be written:

Rt(h) = log
St+h

St
=

t+h∫
t

σudwW s
u ,

where the two stochastic processes σ and ws are independent. Hence, given the volatility
path, the log return is normal and we can write

E
[
R2

t (h) /σ
] = t+h∫

t

σ2
u du

and

E
[
R4

t (h) /σ
] = 3

⎡⎣ t+h∫
t

σ2
u du

⎤⎦2

.

The unconditional kurtosis of the return over the period [t, t + h] is therefore given by

k(h) = E
[
R4

t (h)
](

E
[
R2

t (h)
])2 = 3

⎡⎣1+
Var

[
1
h

∫ t+h
t σ2

u du
]

(
E
(
σ2

))2

⎤⎦. (3.13)
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Then, to address the issue of consistency between short-term and long-term patterns,
it is worth considering the limit cases of infinitely short time to maturity (h → 0) and
infinitely long time to maturity (h →∞). First, because 1

h

∫ t+h
t σ2

udu converges in
mean-square toward σ2

t when h tends to zero:

lim
h→0

k(h) = 3

[
1+ Var

(
σ2

)(
E
(
σ2

))2

]
. (3.14)

Equation (3.14) is a specialization to very short-term intervals of a well-known result
since Clark (1973): the excess kurtosis is equal to three times the squared coefficient
of variation of the stochastic variance. This excess kurtosis effect persists in the very
short term even though the volatility smile evaporates and the conditional variance

Vt

[
1
h

∫ t+h
t σ2

udu
]

tends to zero. This is a counterexample to the claim that convexity

of the volatility smile is simply produced by unconditional excess kurtosis. As already
previously noted, observed violations of BS pricing for very short-term options cannot
be captured within the one-factor SV framework without introducing a huge volatility
risk premium, which would become explosive in longer term options. This explains
why jumps, multiple volatility factors, or other nonlinearities have been introduced.

The focus of interest here is the remaining puzzle that SV still appears to be significant
for very long maturity options as documented by Bollerslev and Mikkelsen (1999).
The implied level of volatility persistence to account for deep volatility smiles in long-
term options is large in the framework of standard (short memory) models of volatility
dynamics, even with a model of permanent and transitory component as in Engle and
Lee (1999). Moreover, this cannot be easily reconciled with the stylized fact that the
sample autocorrelogram of squared asset returns generally decreases quite abruptly in the
short term, whereas it appears to converge slowly to zero in the long term. To address
this issue, Comte and Renault (1998) proposed a continuous-time SV model with long
memory. Long memory in volatility dynamics is a well-documented empirical fact (see,
e.g., Ding et al., 1993), which has given rise to various long-memory GARCH models
(Baillie et al., 1996; Bollerslev and Mikkelsen, 1996; Robinson, 1991) and long-memory
discrete time SV models (Breidt et al., 1998; Harvey, 1998).

To get a long-memory continuous-time SV model, the basic idea of Comte and
Renault (1998) was to extend the lognormal SV model to fractional Brownian motion.
The log-volatility process follows Ornstein–Uhlenbeck dynamics but with the standard
Brownian motion replaced by a fractional one. Because the main strand of the volatility
literature is now more oriented toward affine models,we rather present here an overview
of the affine fractional SV of Comte et al. (2001). The results are qualitatively similar to
Comte and Renault (1998), but the affine setting provides closed form formulas useful
for interpretation and option pricing applications as well. Starting from a CIR SV model
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as in Heston (1993), dσ̃2(t) = k
(
θ̃ − σ̃2(t)

)
dt + γσ̃(t)dW X (t), Comte et al. consider

the centered process X(t) = σ̃2(t)− θ̃ and a fractional integration of it:

X (d)(t) =
t∫

−∞

(t − s)d−1

%(d)
X(s)ds, 0 ≤ d ≤ 1. (3.15)

To facilitate the interpretation, it is worth noting that a formal integration by part on
(3.15) implies that under some convergence conditions, one can rewrite X (d)(t) as

X (d)(t) =
t∫

−∞

(t − s)d

%(d + 1)
dX(s). (3.16)

It can be seen from (3.16) that X (0)(t) = X(t), and X (1)(t) corresponds to standard
integration of X(t) as in (3.15). It can be shown that for 0 ≤ d < 1/2, the process
X (d)(t) is mean-square stationary centered at zero.Then,up to positivity restrictions (see
Comte et al. for a discussion), the volatility process is defined by σ2

t = X (d)(t)+ θ for
some positive parameter θ. For d = 0, σ2

t is a standard affine volatility process:

dσ2
t = k

(
θ − σ2

t
)

dt + γ

√
σ2

t + θ̃ − θdW X (t).

Although Var
(
σ2

t
) = θ̃γ2/2k and the autocorrelation function of σ2

t has an exponential
rate of decay, ρ

[
σ2

t+h, σ2
t
] = e−k|h|.

In contrast, for 0 < d < 1/2, the volatility process is still mean-reverting, yet it will
feature some long range dependence. Moreover,

Var
(
σ2

t
) = θ̃γ2

k2d+1

%(1− 2d)%(2d)
%(1− d)%(d)

, (3.17)

and the autocorrelation function of σ2
t has only an hyperbolic rate of decay for large lags:

ρ
[
σ2

t+h, σ2
t
] ∼ (kh)2d−1/%(2d) when h tends to infinity. In other words, a positive value

of d allows to introduce much more volatility persistence, not only, as usual, through
a small mean reversion parameter k, but also, even more importantly, through a rate of
decay, which is hyperbolic instead of exponential.

This long-memory model of volatility accommodates much better the volatility smile
puzzle for long-term options. Indeed, it can be shown that for 0 ≤ d < 1/2,

Vart

⎡⎣1
h

t+h∫
t

σ2
s ds

⎤⎦ ∼ γ2θ̃

k2d+1

(hk)2d−1

(d + 1)%(d + 1)2
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when h tends to infinity. Hence,we can clearly disentangle two effects in the explanation
of the volatility smile: (i) the first one, independent of the maturity is simply produced
by the stochastic feature of volatility and is proportional to its unconditional variance
through the term

(
γ2θ̃/k2d+1

)
and (ii) the second one captures the erosion of the volatil-

ity smile when the time to maturity increases. It is given by the term (hk)2d−1 where,
for a given long-memory parameter d, the time to maturity h is scaled by the mean
reversion parameter k.

The second effect is important to understand the phenomenon that long-term options
still feature deep volatility smiles. For instance, a moderate level of long memory in
the volatility process, d = 1/4 say, would imply that the conditional variance would be
divided by a factor of ten when the time to maturity h of the option contract is multiplied
by 100. In contrast, the same factor 100 would divide the variance in the short-memory
case (d = 0).

Finally, note that the kurtosis coefficient k(h) will converge toward its Gaussian limit
3 at the some speed h2d−1 as the conditional variance goes to zero. In other words
and by contrast with the short-term case, the volatility smile and the excess kurto-
sis vanish at the same speed when time to maturity increases to infinity. Of course,
long memory may produce cumbersome statistics because the past information is very
slowly forgotten. However, a convenient feature of the affine fractional SV model is that
integrated volatility

∫ t+h
t σ2

s ds over the lifetime of the option and BS-implied volatili-
ties are fractionally cointegrated. Moreover, the conditional probability distribution of∫ t+h

t σ2
s ds − Et

[∫ t+h
t σ2

s ds
]

given information available at time t only depends on the

current value of the state variable X(t).
In other words, all the long-memory features relevant for option pricing are encapsu-

lated in the expected integrated volatility and can be captured by BS-implied volatilities.
Note in particular that the fractional cointegration relationship justifies the widely used
predicting regressions of realized volatilities on BS-implied volatilities. See Bandi and
Perron (2003) for an empirical illustration of fractional cointegration in this context.
Indeed, it can even be shown that there is a deterministic relationship between expected
integrated volatility and BS-implied volatilities for very long-term options. Beyond that,
all the residual variations of BS-implied volatilities across moneyness (volatility smile)
and across maturities (volatility term structure) are well described by the short-memory
dynamics of the state variables.

3.3. Pricing Options Based on Objective Parameters

A number of papers such asAndersen et al. (2010) and Eraker et al. (2003) have derived the
option pricing implications of jump-diffusion models relying only on returns data for the
underlying asset. This exercise aims at evaluating the economic significance of statistical
differences across models. Understanding how the various factors such as SV, jumps in
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returns, or jumps in volatility determine the conditional distribution as a function of
time to maturity and level of volatility is equivalent to understanding how option prices
change with respect to these factors. Indeed, options with different strike prices and
times to maturity are affected by different attributes of the conditional distribution of
returns. However, to price options in an arbitrage-free framework, one needs to specify
a candidate state price density (SPD) or to characterize the transformation from the
objective measure to the risk-neutral measure. In the presence of jump and SV risks,
appropriate risk compensation must be incorporated in the risk-neutral dynamics. As
already noted, there are potentially risk premia associated with SV, mean jump sizes,
volatility of jump sizes, and jump timing. Separating the various risk premia is not an
easy task. Assumptions have to be made. The crudest assumption consists in setting at
zero all risk premia associated with SV and jumps. Under this assumption, the change
from the objective measure to the risk-neutral measure affects only the drift of the stock
index returns, which is equal to the interest rate minus the dividend yield. Andersen
et al. (2001) and Eraker et al. (2003) make such an assumption and study the impact of
SV and jumps on the levels of implied volatility as well as on the shapes of the implied
volatility curves.

Jumps in returns affect mainly the tails of the conditional distribution and induce
excess kurtosis. As shown by Das and Sundaram (1999) among others, this effect is
strongest for short maturity options because the degree of excess kurtosis in a jump
model decreases with maturity.With jump processes, the implied volatility smile flattens
out very quickly. Unlike jumps,SV affects the conditional distribution the most at longer
horizons. For typical parameterizations such as a slow-moving mean reverting volatility,
the term structure of kurtosis is increasing over a reasonable horizon. Eraker et al. (2003)
produce a figure of implied volatility curves for the models SV, SVJ, SVIJ, and SVCJ
for four different times to maturity (2 weeks, 2 months, 6 months, and 1 year). The
results indicate that there are differences both in the levels of implied volatility and
in the shapes of the implied volatility curves. Regarding the volatility level, the main
difference between the models comes from the estimates of the spot volatility. The spot
volatility estimates for the S&P 500 are 15.10,14.32,15.18,and 15.51% for SV,SVJ,SVCJ,
and SVIJ, respectively. This translates into a level difference of almost 2% points in the
implied volatility for at-the-money options with 1 year to maturity.There are a number
of noteworthy results for the shapes of the volatility curves. First, the implied volatility
curves produced by the SV model are flat. Second, adding jumps in returns steepens the
implied volatility curves at all maturities. With a sizable negative mean jump estimate
for all the models, the implied volatility curves are downward sloping to the right and
not U-shaped. Third, the addition of jumps in volatility fattens further the tails of the
conditional distributions and makes the implied volatility curves steeper.Therefore, even
without any risk premia, jumps and especially jumps in volatility have an important
impact on option prices, which translates into term structures and cross-sections of
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implied volatility more consistent with data. These results are in contrast with Andersen
et al. (2001) who need to add risk premia to generate steep-implied volatility curves.This
is mainly due to the fact that their estimates for the jump parameters are small compared
with Eraker et al. (2003). However, all studies concur in finding a flattening out of the
implied volatility curves as maturity increases for all the models. Indeed, the skewness
and kurtosis of the conditional distribution at longer horizons are due mainly to the
volatility process and not to the jump processes.

To assess the actual quantitative importance of risk premia for option pricing,one needs
to estimate these risk premia along with the parameters of the model.The option market
provides us with prices which can be used, along with stock returns, to estimate these
risk premia. However, to achieve this, one needs additional assumptions to characterize
the form of these risk premia as well as an econometric model of option pricing errors.

4. IMPLIED RISK-NEUTRAL PROBABILITIES
The concept of pricing kernel or SPD is central to the dynamic asset pricing theory,
in particular to the pricing of derivatives. The price at time t of a claim paying an
FT−measurable random variable V at time T is given by

πt = 1
θt

E[V θT | FT ]. (4.1)

In the context of the jump-diffusion model described in the previous section, markets
are incomplete and this SPD is not unique. For a SVJ model, Pan (2002) proposes a
candidate SPD of the following form:

θt = exp

⎛⎝− t∫
0

rτdτ

⎞⎠ exp

⎛⎝− t∫
0

ζτdWτ − 1
2

t∫
0

ζ′τζτdτ

⎞⎠exp

⎛⎝∑
i,τi≤t

ξπi

⎞⎠, (4.2)

where ζ represents a vector of the market prices of risk for the price and volatility shocks
and ξπi is the market price of jump risk. The market prices of risk are defined by

ζ
(1)
t = ηs√Vt , ζ

(2)
t = − 1√

1− ρ2

(
ρηs η

v

σv

)√
Vt . (4.3)

This specification of the market prices of risk makes the risk premia for the diffusive
price shock and the volatility shock proportional to Vt and equal to ηsVt and ηvVt ,
respectively. These forms of the risk premia have been suggested by Bates (1996a, 2000)
based on a log utility model for the representative investor.

The jump risks are priced by the jump components ξπi in the SPD,assumed to be i.i.d.
and normally distributed with mean μπ and variance σ2

π and independent of W . The
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random jump sizes ξπi and ξy
i are allowed to be correlated with a constant correlation ρπ

but are independent at different jump times.
It is more common to transform the model to write it under a risk-neutral measure Q∗,

which is defined from a density θt exp
( ∫ t

0 rτdτ
)
.The SVJ model will be then written as

( dSt
St

dVt

)
=

(
rt − ηsVt − λ∗yμ∗y
κ(α− Vt)+ ηvVt

)
dt +√Vt

(
1 0

ρσv
√
(1− ρ2)σv

)
dW

∗
t +

(
ξydN Qy∗

t

0

)
(4.4)

The risk-neutral dynamics differs from the dynamics under the objective measure by
the drift terms, which incorporate the risk premia and by replacing Wt = (W1t , W2t)

′
by W

∗
t = (W

∗
1t , W

∗
2t)
′, a vector of independent standard Brownian motions under Q∗

defined by

W
∗
t = Wt +

t∫
0

ζsds, 0 ≤ t ≤ T . (4.5)

The jump process N Q∗y has the same distribution under Q∗ than under Q except
that ξy ∼ N (μ∗y , σ2

y ), where μ∗y = μy + σyσπρπ. It means that the model allows for a
jump-size risk. It can also allow for a jump-timing risk because the λ∗y can be different
from λy : λ∗y = λy exp(μπ + σ2

π/2). In Bates (2000) and Pan (2002), the jump-size
intensity is made volatility dependent with one and two factors in volatility.

The price of a European option expiring at T with a strike price of K is given by

πt = 1
θt

Et
[
θT (ST − K )+

]
. (4.6)

A Fourier transform-based approach is adopted to calculate this expectation,as in Heston
(1993), Bates (1996, 2000), Bakshi et al. (1997), Bakshi and Madan (2000), and Duffie
et al. (2000). The explicit formula is given in these papers. For our purpose, let us
characterize the solution as a function f :

πt = St f (Vt ,ϑ, rt , T − t, K/St), (4.7)

where ϑ = (κ,α, σv, ρ, ηs, ηv, λy, λ∗y ,μy, σy,μ∗y) is the vector of model parameters. We
will detail in the next subsection the various issues raised by the estimation of such a
model.

4.1. Econometric Model of Option Pricing Errors
Typically, such a theoretical asset pricing model explains an observed stationary process Yt
of n asset “prices” as a known function of the current value Xt of K latent state variables
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and p unknown parameters θ:

Yt = {hi [Xt , θ]}1≤i≤n . (4.8)

Note that when one loosely says asset “prices”, one should rather understand “yields” in
the case of bonds or “option premium by unit of spot price” in case of options on equity
or any other transformation well suited to build a n-dimensional stationary time series
Yt from the observation of time series of asset prices, likely to be nonstationary. In the
context of options on equity, one may also replace (see, e.g., Chernov and Ghysels, 2000;
Pastorello et al., 2000; Renault and Touzi, 1996) option prices by the corresponding
BS-implied volatilities.

With respect to the most general formulation of empirical asset pricing models pre-
sented in Section 2, we focus here on a more specific approach that is more common
in the arbitrage-free asset pricing literature. First, the pricing kernel is not explicitly
included in the list of latent state variables. Instead, it is defined as a known function of a
collection Xt of relevant risk factors as instantaneous risk free rate,diffusive return shocks,
volatility shocks, and jump events as well as a collection of risk premium parameters θ2

that define the compensation for the various risk factors. Then, the dynamics of the
latent risk factors Xt only identify a set θ1 of unknown “statistical” parameters while the
risk premium parameters θ2 must be added to define the complete vector θ of structural
parameters of interest for asset pricing θ = [θ′1, θ′2]′.

For empirical option pricing on equity, the above approach is typically the one fol-
lowed by Heston (1993), Bates (2000), Chernov and Ghysels (2000), and Pan (2002)
among others. For term structure modeling, this approach is particularly well suited
to capture through K explanatory latent factors of the yield curve the relationships
between n observed yields in cross-section. A large strand of literature, initiated in par-
ticular by Chen and Scott (1993), Pearson and Sun (1994), and Duan (1995), uses this
indirect empirical modeling of bond yields through underlying latent factors. In contrast,
explicit dynamic modeling of the joint stochastic process of asset returns and pricing ker-
nel can be found in the consumption-based equilibrium asset pricing literature (see, e.g.,
Aït-Sahalia and Lo, 2000; Jackwerth, 2000; Rosenberg and Engle, 2002, for applications
to option pricing) or in an even more general way in Constantinides (1992) and Garcia
et al. (2003).

Of course, the simplest approach to estimating a K factors model is to select n = K
asset prices in the cross-section and to exploit the one-to-one relationship between prices
and factors to get either the exact likelihood (Chen and Scott, 1993; Pearson and Sun,
1994; Duan, 1995) or an expansion of it (Aït-Sahalia and Kimmel, 2002) or implied
moments (Pan, 2002, or a simulated score, Dai and Singleton, 2000).This approach leads
unmistakably to neglect the potentially useful information conveyed by a number of
observed related prices in the cross-section. For instance,Pan (2002) estimates a stochastic
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volatility model for option pricing on the S&P 500 index from the joint time series of the
index and one near-the-money short dated option on it. One option price is sufficient to
get a one-to-one relationship with the volatility factor, yet (see, e.g., Dumas et al., 1998),
by taking into account the various possible moneynesses and maturities, the number of
fairly liquid option prices on S&P 500 that can be observed at any given date may be
about 10 or even more. Similarly, although common models of the yield curve involve
K = 1, 2, or 3 factors, the number n of available maturities in the cross-section is about
30 or even more.

However, as emphasized by Renault (1997), when the number n of observed asset
prices is larger than the number K of latent state variables, this produces some stochas-
tic singularity and statistical estimation theory becomes irrelevant. If one takes the
asset pricing model seriously, some parameters can be computed exactly. For exam-
ple, in the BS case of no latent state variable, observing the price of one option will
be enough to compute exactly the volatility of the process. In the case of SV models,
one can recover the exact value of the current state of the variance process by matching
observed prices with the pricing formulas after elimination of unknown parameters.
But different option prices would imply different values for the current state of the
variance process. This fundamental inconsistency can be resolved either by increasing
ad infinitum the number of state variables and match perfectly the observed paths or
cross-sections of option prices (this nonparametric approach is in the spirit of Rubin-
stein (1994) implied binomial tree methodology described in Section 5) or by admitting
that these formulas are approximative and that the observed price is the price given by
the formula plus an error term. The presence of this error term is not difficult to justify
by simply recognizing that any model is intrinsically misspecified whether it is in its
assumptions about the stochastic process followed by the underlying or in its simplis-
tic description of market structure abstracting from microstructure effects and market
frictions.

Therefore, the retained empirical specification of the asset pricing model (4.8) will be

Zt = (Yit)1≤i≤K = h[Xt , θ] = [hi(Xt , θ)]1≤i≤K

Vt = (Yit)K+1≤i≤n = e[Xt , θ] + ut = [hi(Xt , θ)]K+1≤i≤n + [uit]K+1≤i≤n.
(4.9)

Note that we consider at this stage that the n assets prices have been relabeled to
get zero pricing errors for the K first ones, whereas the (n − K ) other ones differ from
their theoretical values by error terms uit . Hence, we do not really maintain the arbitrary
assumption that exactly K prices coincide with their theoretical values, whereas error
terms may be added to the other ones. We just say that because the structural model
already involves K latent factors, there is no reason to introduce more than (n − K ) error
terms, while at least K independent linear combinations should be observed without
error. Of course, such a specification needs to know a priori what are the K prices (or
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the K linear combinations of prices) that are observed without error. This is mainly an
empirical question.

Let us first set the stage for inference on (4.9) in the context of maximum likelihood-
based inference strategies. A maintained assumption will be that the error terms uit
have a zero unconditional mean and that the first K equations provide a one-to-one
relationship between the vector Zt of the K prices observed without error and the
vector Xt of structural state variables:

Zt = (Yit)1≤i≤K = h[Xt , θ] ⇔ Xt = h−1[Zt , θ]. (4.10)

4.2. Maximum Likelihood-Based Inference

To present a variety of likelihood-based inference strategies, we follow here the pre-
sentation of implied-state maximum likelihood as first proposed by Renault and Touzi
(1996) and Renault (1997). Pastorello et al. (2003) encompass a larger set of implied-state
methodologies under the name of implied-state backfitting.

The conditional likelihood associated to a data set {Yt , t = 1, . . . , T } (and an initial
conditioning value Y0) must be derived, through the Jacobian formula, from the latent
one associated with the “latent data” set

{
Y ∗t , t = 1, . . . , T

}
produced by the latent

realizations of a Markov process Y ∗ one-to-one function of Y :

Yt = g[Y ∗t , θ] ⇔ Y ∗t = g−1[Yt , θ]. (4.11)

Typically, (4.11) must be defined by n equations, thanks to (n − K ) equations that com-
plete the K equations (4.10). A natural idea would be to define the state vector Y ∗t by
augmenting the vector Xt of K structural factors with the vector ut of (n − K ) error
terms. However, an alternative approach is better suited for two reasons. First, the param-
eters η that would define the probability distribution of the error term ut are not the
focus of interest. Of course, their consistent estimation may be useful for improving
the accuracy of the estimation of the parameters of interest θ. We do want to ensure,
however, that even if η is not consistently estimated, we obtain a consistent estimator
of θ. Typically, in case of Gaussian errors, the vector of nuisance parameters η consists of
the unconditional covariance matrix � of the (n − K ) error terms ut and possibly the
parameters defining the conditional mean and variance dynamics. The mere fact that
these error terms are added ex post and not rationalized within a structural asset pric-
ing model with additional state variables implies that we have no structural information
about their dynamics. Because from (4.9) we note that the estimation of the dynamics of
the error terms may contaminate the estimation of the dynamics of the structural factors,
it is important to define a procedure that focuses only on the structural parameters θ and
not on the augmented vector (θ, η).
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Second, the implied-state identification condition for θ would be problematic if we
defined the latent state vector Y ∗t as Y ∗t = (Xt , ut). The empirical asset pricing model
(4.9) provides a one-to-one relationship between observed prices Yt and latent variables
(Xt , ut), but the risk premium parameters θ2 are identified only by the relationship
itself and not by the probability distribution of the latent process (Xt , ut). However,
the philosophy of the implied-state methodology is precisely to assume that the latent
model (the transition equation of the state variables) carries more information about the
unknown parameters of interest than their occurrence in the measurement equation.To
remain true to this philosophy, a better strategy is to define the latent vector Y ∗t and the
associated function g[Y ∗t , θ] in the following way:

Y ∗t = [X ′t , V ′
t ]′, Yt = [Z ′t , V ′

t ]′ (4.12)

Yt = g[Xt , Vt , θ] = [h′(Xt , θ), V ′
t ]′.

Note that (n − K ) among the n, so-called latent variables Y ∗t are actually observed,
but this is not a reason for not applying the general implied-state methodology. In this
context, the transition density function of the Markov process Y ∗t :

l
[
Y ∗t

∣∣Y ∗t−1

] = l
[
Xt

∣∣Y ∗t−1

]
l
[
Vt

∣∣Xt , Y ∗t−1

]
(4.13)

will be specified under the maintained common assumption that error terms do not cause
structural factors, neither in the Granger sense nor instantaneously. This assumption is
natural because, if one imagines its violation, one implicitly endows the error terms with
some structural interpretation. Then, by the no-Granger causality assumption,

l
[
Xt

∣∣Y ∗t−1

] = l
[
Xt

∣∣Xt−1
] = l

[
Xt

∣∣Xt−1, θ1
]
, (4.14)

where the last expression stresses the fact that this density function depends on the
value of the unknown parameters only through θ1. By the no instantaneous causality
assumption, l[Vt

∣∣Xt , Y ∗t−1] is simply obtained by a translation of size e[Xt , θ] applied to
the conditional probability distribution l[ut

∣∣Y ∗t−1, η] of the error terms given the past.
This probability density function depends on the value of the unknown parameters only
through the nuisance parameters η.

Because we maintain the assumption that all the structural content of the model is
captured by the factors Xt , we do not really want to specify the dynamics of the error
terms and we will carry out inference about structural parameters through a latent quasi-
likelihood, written as the likelihood of a latent model where the error terms would be
i.i.d. Gaussian with a covariance matrix specified as a function �(η):

l
[
ut
∣∣Y ∗t−1, η

] = l[ut |η ] = (2π)−(n−K )/2[det�(η)]−1/2 exp
[
−1

2
u′t�−1(η)ut

]
(4.15)



516 René Garcia et al.

Several remarks are in order about the use of this quasi-likelihood. First, it is well suited
only if the scale Yt used to measure asset prices is consistent with conditional normality
like for instance log-returns or log-implied volatilities. Second,we should not forget that
the quasi-likelihood may differ from the true likelihood and that we just want to get a
consistent estimator of the structural parameters of interest θ. The nuisance parameters
η are likely to be poorly defined and not consistently estimated. However, a general
specification of the covariance matrix �(η) should at least allow us to take into account
the obvious strong cross-sectional patterns of correlation and heteroskedasticity among
error terms (see Renault, 1997, for a general discussion).

Starting from an estimator ηT of the nuisance parameters and a corresponding estima-
tor �T = �(ηT ), we first plug it into (4.13) to define the latent criterion for extremum
estimation of the structural parameters θ:

Q∗
T (θ) = #T

t=2 log l[Xt |Xt−1, θ1 ] − 1
2
#T

t=1[Vt − e(Xt , θ)]′�−1
T [Vt − e(Xt , θ)]. (4.16)

Up to recursive refinements, the backfitting (or iterative implied-state) methodology
amounts to defining a sequence θ(p) of estimators in the following way:

• Start from an estimator θ(1) provided by a quick procedure.
• For θ(p) given, replace in (4.16) the unknown factor values Xt by Xt

(
θ(p)

) =
h−1

[
Zt , θ(p)

]
. This defines a sample-based criterion QT

(
θ, θ(p)

)
.

• Compute the estimator θ(p+1) as arg maxθ QT
(
θ, θ(p)

)
.

Because the nuisance parameters η have been introduced in a way that preserves
adaptivity, the resulting asymptotic probability distribution of the backfitting estimator
of θ will only depend on the probability limit of�T and not on its accuracy as estimator of
the (pseudo) true unknown value of�(η). However,at least in case where the conditional
distribution of the error terms would be well specified, the most accurate backfitting
estimator would be obtained when�T is a consistent estimator of the true value of�(η).
This is the reason why it is natural to think to a“quasi-generalized”version of backfitting
in the following way.

Start from an arbitrary �T (e.g., the identity matrix) and compute the corresponding
backfitting estimator θT of θ.Then, use it to compute “estimated error terms” ut(θT ) =
Vt − e[Xt(θT ), θT ] and to derive a consistent estimator η(θT ) of the pseudo true value
of η and in turn, a consistent estimator �∗T = �[η(θT )] of the pseudo true value of �.
Then, perform a second backfitting estimation of θ based on the criterion (4.16) where
�T has been replaced by W ∗

T . Of course, such a procedure is costly because it implies
several backfitting estimations. Fortunately, there exists a much faster procedure, i.e., in
terms of estimation of θ, asymptotically equivalent to quasi-generalized backfitting, but
in terms of computing time, equivalent to a simple backfitting.
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This procedure that we term “extended backfitting” amounts to using each step θ(p)

of the backfitting iteration to compute a new estimator �[η(θ(p))] of the matrix � and
to plug it into (4.16) in place of �T to derive the next step estimator θ(p+1) of θ. At first
sight, extended backfitting is similar to standard backfitting applied to the augmented
vector (θ, η) of unknown parameters. However, we do not refer to a general backfitting
theory (in terms of an augmented vector of parameters) to justify this procedure. There
is little hope to get a sequence that is contracting with respect to the nuisance parameters
η, and this is the reason why the relevant convergence criterion of the approximation
sequence for applications will only be based on the norm ||θ(p+1) − θ(p)||.

The relevant argument is the following. Irrespective of the choice of the weigh-
ting matrix �T in (4.16), the backfitting estimator is a consistent estimator of the true
unknown value of θ. Therefore, it is clear that the limit of the sequence θ(p) pro-
duced by the extended backfitting algorithm also provides a consistent estimator of
θ, and in turn, the limit of the sequence �[η(θ(p))] provides a consistent estimator
of the true unknown value of �[η]. Because the asymptotic probability distribution
of the backfitting estimator of θ only depends on the probability limit of �T , it is
then clear that we get an estimator asymptotically equivalent to the quasi-generalized
backfitting. Let us briefly sketch a comparison with the maximum likelihood based com-
petitors also well suited for inference on such empirical asset pricing models with latent
factors.

A first competitor is the Kalman filter-based quasi-maximum likelihood. The most
popular strategy is to introduce n error terms instead of (n − K ). This has been first
proposed in the context of affine models of the yield curve by Duan and Simonato
(1999) and systematically developed by De Jong (2000). Of course, severe nonlinearities
or nonnormality of the structural model are likely to alter the validity of the Kalman
filter. Generally speaking, the Kalman filter should not be used for highly nonlinear
models and the backfitting filtering strategy should be much better suited. However, in
the context of return dynamics that are not too far to be linear as in the case of affine
models of the yield curve, the two approaches may be competitors. Roughly speaking,
the Kalman filtering approach can be seen as a quick and dirty procedure to check
the validity of our possibly more accurate but also more risky approach. Typically, the
backfitting approach seeks to get more efficient estimators and filters by taking the risk
to specify exact nonlinear relationships between prices and factors with K zero error
terms.

Another quasi-maximum likelihood approach for factor models of the yield curve has
been applied by Fisher and Gilles (1996) and Duffee (2002). Their idea is quite simple.
Even though the latent model is conceived to be simpler than the observable one, the
hard part of the latent log-likelihood (4.16) is the transition density function of the
structural factors Xt . This function is in general produced by a continuous-time model
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and may be hard to compute or simply unknown. However,consistent (albeit inefficient)
estimates can still be obtained if we substitute the true theoretical transition density with
a Gaussian one, provided that the first two conditional moments of Xt are correctly
specified. Besides its potential inefficiency, this alternative QML approach also suffers
from a risk of misspecification bias in case of a nonlinear mapping g between the latent
variables and the observables. In such a case, the Jacobian formula applied to a latent
Gaussian quasi-likelihood may not yield a correct quasi-likelihood for observables. This
drawback is not detrimental in the case of affine (Fisher and Gilles, 1996) or essentially
affine (Duffee, 2002) term structure models but would be an issue in the case of option
prices on equity with SV.

Moreover,as neatly put forward by Duffee (2002),“another advantage of QML (which
it shares with maximum likelihood and related techniques) is that (· · · ) a model estimated
with QML will guarantee that the time-t state vector implied by time-t yields is in the
state vector’s admissible space (to avoid a likelihood zero). By contrast, (· · · ) techniques
such as efficient method of moments (EMM) (· · · ) do not require that the estimated
term structure model be sufficiently flexible to reproduce the term structure shapes in the
data. The parameters of the model in Dai and Singleton (2000), which were estimated
with EMM, illustrate this point.” This point is actually an important motivation to
prefer implied-state-based likelihood rather than simulation-based minimum chi-square
competitors like indirect inference or EMM.

As far as efficiency is concerned, several remarks are in order. First, contrary to
common belief, the fact that can invert any vector of n asset prices into the n state
variables and use the implied-state variables in the estimation does not mean that one
can do as if the state variables were directly observable. The crucial point is that the
one-to-one relationship (4.12) between latent variables Y ∗ and observable variables Y
does depend on the unknown parameters θ. Therefore, nobody knows whether the
Cramer-Rao bound

(
I∗
)−1 for efficient estimation associated with the hypothetical

observation of Y ∗ would be smaller or larger than the Cramer-Rao bound (I )−1

associated with the actual observation Y . The backfitting strategy described above
must not give the fallacious feeling that the Cramer-Rao bound associated with the
maximization of the log-likelihood

∑T
t=1 log L

[
Y ∗t | Y ∗t−1, θ

]
has been reached. This

maximization is actually infeasible, and the backfitting iterative scheme is based on the
sequence:

θ(p+1) = Arg max
θ

T∑
t=1

log L
[
g−1 (Yt , θ(p)

) | g−1 (Yt−1, θ(p)
)

, θ
]
.

As shown in Pastorello et al. (2003), the cost of this necessary iteration is to multiply the
Cramer-Rao bound

(
I∗
)−1 by a matrix-form factor, which is all the less detrimental

than the mapping θ(p)→ θ(p+1) is more strongly contracting.This theory is based on a
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well-defined choice of the number p (T ) of iterations (as a function of the sample size T )
to define a backfitting estimator θp(T )+1. Of course, if one wants to avoid such iterations
and directly maximize the actual log-likelihood to reach the Cramer-Rao bound I−1,
one should not maximize

T∑
t=1

log L
[
g−1 (Yt , θ) | g−1 (Yt−1, θ), θ

]
(4.17)

but rather

T∑
t=1

log L
[
g−1 (Yt , θ) | g−1 (Yt−1, θ) , θ

]+ T∑
t=1

log | Jg−1 (Yt , θ)|, (4.18)

where | Jg−1 (Yt , θ)| denote the absolute value of the Jacobian of the transformation g.
This can be done in some cases but will often be involved for several reasons. First, the
function g is provided by the asset pricing model. It is in general highly nonlinear and
even not available in a closed form formula. Computing the Jacobian matrix can then
be cumbersome.

Second, and even more importantly, the direct maximization of (4.18) will lead to
look for a maximizer θ, which should simultaneously meet two requirements. On the
one hand, it has to give a large value to the latent likelihood, as it is natural to require.
But, on the other hand, θ will tend to be chosen to select the most likely implied-state
values g−1 (Yt , θ). In many circumstances, such a selection appears to be a fairly risky
strategy. For instance, Pastorello et al. (2003) observe that in the case of application
of Aït-Sahalia (2003) likelihood expansions for affine-type diffusion processes, this will
perversely push g−1 (Yt−1, θ) toward the frontier of the domain where the likelihood (as
provided by its expansion) is infinite. This is the reason why one may prefer to perform
the backfitting strategy of likelihood maximization rather than directly maximizing the
possibly unpalatable log-likelihood (4.18).

Indirect inference and EMM are often presented as appealing alternatives to maximum
likelihood, precisely when the likelihood function becomes unpalatable due to some
unobserved state variables. Because the chapter by Gallant andTauchen in this Handbook
is devoted to these techniques, we just sketch here some specific applications for option
pricing.

Pastorello et al. (2000) propose to avoid the backfitting iteration by simply using BS-
implied volatilities as proxies of implied states in a one-factor SV model. Thanks to the
matching of estimated parameter or fitted-score vectors on simulated data, the indirect
inference principle (see Gouriéroux et al., 1993) will correct for the misspecification
bias due to the use of BS-implied volatilities as proxies of actual spot volatilities which
are unobserved. The main drawback of this approach is that although a fully parametric
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model is needed for the purpose of simulation, nobody knows the efficiency loss due to
the use of an auxiliary model (here, the model on BS-implied volatilities) to simplify the
likelihood.

By matching a seminonparametric (SNP) score generator,EMM aims at correcting for
this efficiency loss. The EMM procedure allows estimating the model parameters under
both objective and risk-neutral probability measures if one uses implied volatilities and
the underlying asset data jointly. Time series of the underlying asset provide estimators
under the objective probability measure,whereas risk-neutral parameters can be retrieved
from options. Chernov and Ghysels (2000) adopt the Heston model,which has a closed-
form option pricing formula, and compare univariate and multivariate models in terms
of pricing and hedging performance. An extension of the SNP/EMM methodology
introduced in Gallant and Tauchen (1998) allows one to filter spot volatilities via repro-
jection, i.e., to compute the expected value of the latent volatility process using a SNP
density conditioned on the observable processes such as returns and/or options data.The
results in Chernov and Ghysels (2000) show that the univariate approach only involv-
ing options by and large dominates. A by-product of this finding is that they uncover
a remarkably simple volatility extraction filter based on a polynomial lag structure of
implied volatilities. The bivariate approach appears useful when the information from
the cash market provides support via the conditional kurtosis to price options. This is
the case for some long-term options. Another solution to the efficiency problem may
be provided by Markov Chain Monte Carlo techniques as described by Johannes and
Polson (2010) in this handbook.

4.3. Implied-State GMM
Taking advantage of the explicitly known moment-generating function of return and
volatility in an affine model, Pan (2003) also advocates an implied-state methodo-
logy to focus directly on the joint dynamics of the state variables rather than the
market observables, which could be highly nonlinear functions of state variables. In
this respect, the approach still belongs to the general class of backfitting methodolo-
gies as studied by Pastorello et al. (2003), but the convenience of the GMM setting
introduces some additional simplifications. The basic idea is to start from conditional
moment restrictions which would provide a feasible GMM if the latent variable Y ∗ were
observed:

E
[
$

(
Y ∗t , θ

) | Y ∗t−1

] = 0 (4.19)

Following Hansen (1985), Pan (2003) uses the optimal instrument matrix provided by

Mt−1(θ) = E
[
∂$′

∂θ

(
Y ∗t , θ

) | Y ∗t−1

] (
Var

[
$

(
Y ∗t , θ

) | Y ∗t−1

])−1 .
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Then,one would like to work with the just identified unconditional moment restrictions:

E
[
Mt−1(θ)$

(
Y ∗t , θ

)] = 0

and to look for the estimator θ̂T solution of

1
T

T∑
t=1

Mt−1

(
θ̂T

)
$
(
Y ∗t , θ̂T

)
= 0 (4.20)

Of course, this estimator is infeasible because Y ∗t is not observed.Then, two strategies
may be imagined. The implied-state backfitting of Pastorello et al. (2003) still amounts

to replace every occurrence of Y ∗ in Mt−1(θ) and $
(
Y ∗t , θ

)
by g−1

(
Yt , θ(p)

)
where

θ(p) comes from a previous step estimation. Insofar as such iterations converge, they will
converge toward Pan’s (2003) IS-GMM estimator, which is actually the second strategy:
directly solve (4.20) when Y ∗t is replaced by g−1(Yt , θ). Then, the unknown θ appears
not only in the occurrences of θ in Mt−1(θ) and $

(
Y ∗t , θ

)
but also inside any occurrence

of Y ∗t = g−1(Yt , θ).
By contrast, Pastorello et al. (2003) define a number p(T ) of iterations (as a function

of the number T of observations) such that the backfitting estimator θp(T )+1 is asymp-
totically equivalent to the Pan (2003) IS-GMM estimator.Then, the choice between the
two strategies is just a matter of computational convenience, depending whether one
consider that the backfitting iterations simplify or not the solution of the IS-GMM fixed
point problem.

Moreover, as stressed by Pan (2003) in her discussion of Pastorello et al. (2003), there
is a case where IS-GMM may work while IS-backfitting does not work.This is the case
where θ would not be fully identified from state variables dynamics Y ∗, for instance
due to some risk premium parameters which do not appear in the factor dynamics.
Even in such a case, one may hope that IS-GMM still identifies θ. It is however worth
reminding that when as in Subsection 4.2 there are more observed prices than latent state
variables, same error terms are added and the vector Y ∗ includes same observed asset
prices which do identify the risk premium parameters. Then, implied-state backfitting
works. In any case, as in the implied-state likelihood methodology of Subsection 4.2,
efficiency is not guaranteed by this kind of implied-state approaches. In the context of
(4.19), semiparametric efficiency would involve the computation of optimal instruments
for the conditional moment restrictions:

E
[
$

(
g−1 (Yt , θ) , θ

) | Yt−1
] = 0. (4.21)

Then, the Jacobian matrix of the moment conditions needed for computing optimal
instruments involves differentiation with respect to the two occurrences of θ in (4.21) and
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not only the second one – as acknowledged by Pan (2003),we sacrifice efficiency and gain
analytical tractability by ignoring the dependence of Y ∗t on θ. As already mentioned in
the likelihood case, it may indeed be challenging to look simultaneously for the“optimal”
value of the implied states and for the best fit in the latent model. However, although
backfitting was really needed in the likelihood case because, otherwise, forgetting the
Jacobian term may imply inconsistency of the estimator, there is no such consistency
problem with GMM. The only consequence of not taking into account the complete
Jacobian term is that the efficiency of the optimal instrument scheme may be “limited”,
as acknowledged by Pan (2003). Indeed, because the two estimators IS-GMM and IS-
backfitting are asymptotically equivalent, this limit to efficiency is tightly related to the
contracting feature of the backfitting correspondence. More contracting it is, smaller is
the efficiency loss.

4.4. Joint Estimation of Risk-Neutral and Objective Distributions

The area of joint estimation of risk-neutral and objective measures is probably where most
of the progress took place over the last five years. The stage was set in the early 1990s
with the considerable advances made regarding estimation of diffusion processes. Exploi-
ting the EMM estimation procedure of Gallant andTauchen (1996) for the estimation of
diffusions, Chernov and Ghysels (2000) propose a generic procedure for estimating and
pricing options using simultaneously the fundamental price St and a set of option con-
tracts [(σI

it)i=1,m]where m ≥ 1 and σI
it is the BS-implied volatility.The procedure consists

of two steps.The first one fits a SNP density of [St , (σI
it)i=1,m] conditional on its own past

[Sτ , (σI
iτ)i=1,m] for τ < t. Second,one simulates the fundamental price and option prices

and calibrates the parameters of the diffusion and its associated option pricing model
to fit the conditional density of the market data dynamics. The EMM procedure allows
estimating the model parameters under both objective and risk-neutral probability mea-
sures if one uses implied volatilities and the underlying asset data jointly. Time series of
the underlying asset provide estimators under the objective probability measure,whereas
risk-neutral parameters can be retrieved from options. Chernov and Ghysels (2000)
adopt the Heston model, which has a closed-form option pricing formula, and compare
univariate and multivariate models in terms of pricing and hedging performance.

Computing the prices of risk involves parameters of the objective measure, the risk-
neutral measure, and the latent volatility process. The univariate specifications consist of
models only using the fundamental (i.e., the usual setup) and models using only options
data. It should be noted,however, that the knowledge of the estimated model parameters
is not sufficient to compute an option price or a hedge ratio. We have to know the
latent spot volatility as well. Because the option price is a one-to-one function of the
current value of the volatility process (Renault and Touzi, 1996), one can recover it via
an inversion of the option pricing formula. However, this procedure is computationally
cumbersome, except if one relies on approximations by series expansions (Garcia et al.,
2009; Lewis, 2000).
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Another possible strategy is to use an extension of the SNP/EMM methodology
introduced in Gallant and Tauchen (1998), which allows one to filter spot volatilities
via reprojection, i.e., compute the expected value of the latent volatility process using
a SNP density conditioned on the observable processes such as returns and/or options
data. The results in Chernov and Ghysels (2000) show that the univariate approach
only involving options by and large dominates. A by-product of this finding is that they
uncover a remarkably simple volatility extraction filter based on a polynomial lag structure
of implied volatilities.The bivariate approach appears useful when the information from
the cash market provides support via the conditional kurtosis to price options. This is
the case for some long-term options.

Pan (2002) examines also a joint time series model of the S&P 500 index and
near-the-money short-term option prices in the context of the jump-diffusion model
described at the beginning of this section. She uses an implied-state GMM approach to
estimate the model. For a given set of model parameters ϑ, she replaces the unobserved
volatility Vt by an option-implied volatility V ϑ

t inverted numerically from the spot
price St and a near-the-money short-term option price πt based on the option pricing
formula implied by the jump-diffusion model.6 The interest of such a method is to
take advantage of the analytical tractability of the state variables S and V compared
with the complicated joint dynamics of the pair S and π, given the nonlinear nature
of the option pricing function. The usual GMM procedure can be applied to the
moments of the pair of state variables St and V ϑ

t , but now one of the state variables is
parameter-dependent. The closer ϑ is to the true model parameter vector ϑ0, the more
accurate is the corresponding option-implied volatility V ϑ

t .
Garcia et al. (2009) propose an estimation procedure that uses both option prices and

high-frequency spot price feeds to estimate jointly the objective and risk-neutral param-
eters of SV models. This procedure is based on series expansions of option prices and
implied volatilities and on a method-of-moment estimation that uses analytical expres-
sions for the moments of the integrated volatility. In a SV model, with or without
correlation, the option pricing formula involves the computation of a conditional expec-
tation of a highly nonlinear integral function of the volatility process. To simplify this
computation, the authors propose to use an expansion of the option pricing formula in
the neighborhood of σV = 0,as in Lewis (2000),which corresponds to the BS determin-
istic volatility case. The coefficients of this expansion are well-defined functions of the
conditional moments of the joint distribution of the underlying asset returns and inte-
grated volatilities, which are also derived analytically. These analytical expansions allow
to compute very quickly implied volatilities, which are functions of the parameters of
the processes and of the risk premia. A two-step GMM approach using intraday returns
for computing approximate integrated volatilities (the objective part of the estimation)

6The numerical procedure to compute the model-based implied volatility is described in Appendix B of Pan (2002).
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and option prices for computing implied volatilities (the risk-neutral part of the estima-
tion) allows to recover the volatility risk premia λ. The main attractive feature of this
method is its simplicity once analytical expressions for the various conditional moments
of interest are available. The great advantage of the affine diffusion model is precisely
to allow an analytical treatment of the conditional moments of interest. Eraker (2004)
applies a Markov chain Monte Carlo-based approach to joint time-series data on spot
and options also for a jump-diffusion model.

5. NONPARAMETRIC APPROACHES
The financial theoretical models of the previous sections are based on parametric dynamic
processes for stock returns. Despite the great deal of complexity put into these processes
to capture the features of the data, they remain usually misspecified.Therefore, nonpara-
metric methods, which are so-called model-free and make minimal assumptions about
the underlying asset price process, appear as a promising tool to apply in the context of
derivative pricing. Moreover, these methods are well adapted to the financial problems
at hand because the quantities of interest are functions, whether it is the risk-neutral dis-
tribution or SPD, the distribution function for hedging or else the value-at-risk quantile
function of the conditional distribution of returns.

Nonparametric methods have been applied to all the above-mentioned financial prob-
lems of interest.We will discuss in this section how nonparametric methods can be used
to recover a pricing function, a hedging ratio and a risk-neutral distribution. As a way
to make the transition between the parametric and nonparametric approaches, we will
first consider a semiparametric approach proposed by Aït-Sahalia and Lo (1998) and
Gouriéroux et al. (1994). The main idea is to recover risk-neutral distribution using
a nonparametric deterministic volatility function while maintaining that the derivative
pricing function is given by the parametric BS formula. Next, we will see a maximum
entropy approach initiated by Buchen and Kelly (1996) and Stutzer (1996) to recover
a risk-neutral distribution from a set of option and stock prices, as well as the implied
binomial tree method of Derman and Kani (1994),Dupire (1994),or Rubinstein (1994).
Third, we will survey the purely nonparametric approaches such as kerned-based tech-
niques or learning networks used to estimate an option pricing function and recover the
other quantities of interest with option price data. We will underline several potential
problems associated with these purely nonparametric approaches such as negative risk-
neutral probabilities and argue following Garcia and Gençay (2000) and Aït-Sahalia and
Duarte (2003) that imposing weak constraints on the shape and properties of the pricing
function can improve the performance of the statistical model in several dimensions.7

7See alsoYatchew and Härdle (2005), Birke and Pilz (2009), and Fan and Mancini (2008).
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Last, we will describe how to recover preferences from the estimates of the SPD as pro-
posed by Jackwerth (2000),Aït-Sahalia and Lo (2000), Rosenberg and Engle (2002), and
Chabi-Yo et al. (2008).

Most empirical studies of option pricing focus on European contracts. In contrast,
American options while actively traded and very liquid in some cases (such as the S&P
100-based contracts) have been avoided to circumvent early exercise premia and bound-
aries. It is worth noting that nonparametric methods are particularly suited to handle
American-type options. Broadie et al. (2000a,b) use nonparametric techniques to estimate
pricing functions as well as early exercise boundaries for American options.

5.1. Semiparametric Approaches to Derivative Pricing
One of the reasons why option price data do not conform to the BS model is that volatility
is not constant. One can still maintain the assumption of a one-factor diffusion process but
make the diffusion coefficient a deterministic function of the available information such
as the exercise price, the underlying price, and the time to maturity. Although Shimko
(1993) proposed a polynomial function of these variables for the volatility, Aït-Sahalia
and Lo (1998) modeled the volatility function using kernel methods. The strategy is to
construct a nonparametric estimator of the expectation of volatility given the information
available on the underlying stock price St (or the futures price Ft,τi = Ste(rt,τ−δt,τ)τ , with
r and δ the interest rate and the dividend rate), the exercise price Xi, and the time to
maturity τi associated with n traded options:

σ̂(Ft,τ , X , τ) =
∑n

i=1 kF

(
Ft,τ−Ft,τi

hF

)
kX

(
X−Xi

hX

)
kτ
(
τ−τi
hτ

)
σi∑n

i=1 kF

(
Ft,τ−Ft,τi

hF

)
kX

(
X−Xi

hX

)
kτ
(
τ−τi
hτ

) , (5.1)

where the multivariate kernel is formed as a product of three univariate kernels kF ,
kX , and kτ , each with their own bandwidth value, with respect to the three variables of
interest, and where i is the BS volatility implied by the observed price of option i. A call
pricing function can then be estimated as

π̂(St , X , τ, rt,τ , δt,τ) = πBS(Ft,τ , X , τ, rt,τ , σ̂(Ft,τ , X , τ)). (5.2)

From this function, one can also obtain estimators for the option’s delta and the SPD by
taking the appropriate partial derivatives according to (2.6) and (2.12):

�̂t = ∂π̂(St , X , τ, rt,τ , δt,τ)

∂St
(5.3)

f̂ ∗t (ST ) = ert,ττ
[
∂2π̂(St , X , τ, rt,τ , δt,τ)

∂X2

]
|X=ST

. (5.4)
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Of course, in nonparametric methods, higher order derivatives are estimated at a
slower rate of convergence. This is known as the curse of differentiation. However, in
a simulation framework based on a BS model,Aït-Sahalia and Lo (1998) show that the
estimation errors for all nonparametric quantities (option price, option delta, and SPD)
remain within 1% of their theoretical counterparts.Aït-Sahalia and Lo (1998) apply their
method to the estimation of these quantities for S&P 500 European option price data.
Their sample period is January 4, 1993 to December 31, 1993. Their nonparametric
estimator of volatility σ̂(Ft,τ , X , τ) generates a strongly asymmetric volatility smile with
respect to moneyness, confirming several sources of evidence according to which out-
of-money put prices have been consistently bid up since the crash of 1987. The shape
of the smile changes as time to maturity increases. The one-month smile is the steepest:
volatility curves are flatter for longer times to maturity. Strong skewness and kurtosis
effects are present in the semiparametrically estimated SPDs. The (negative) skewness
in returns diminishes as the maturity increases, whereas the contrary is obtained for the
positive kurtosis.

A somewhat less ambitious approach has been advocated by Erikkson et al. (2009)
and Ghysels and Wang (2009). They suggest to use the normal inverse Gaussian (NIG)
family to approximate an unknown distribution risk-neutral density. The appeal of the
NIG family of distributions is that they are characterized by the first four moments:
mean, variance, skewness, and kurtosis. These are the moments we care about in many
applications – including derivative pricing. The unknown density function is approxi-
mated by matching the cumulants. The latter are obtained from the cross-section of
option prices using methods proposed by Bakshi et al. (2003). One strength of their
approach is that they link the pricing of individual derivatives to the moments of the risk-
neutral distribution,which has an intuitive appeal in terms of how volatility,skewness,and
kurtosis of the risk-neutral distribution can explain the behavior of the derivative prices.
Erikkson et al. (2009) show that the approximation errors are minor when compared to
several option pricing models that have known densities. Another approach, advocated
by Figlewski (2009), consists of estimating the central part of the distribution only with
options and extrapolating the tails via extreme value distributions.

5.2. Canonical Valuation and Implied Binomial Trees

The semiparametric approach we just described still depends on the assumptions that
there is just one state variable and that it is governed by an Itô process.8 But, as we
have extensively documented in the previous sections, there is evidence of jumps and SV
in the underlying stock index process. Therefore, we need procedures that extract the
asset probability distribution directly from observed prices either on the asset itself or on

8In fact, the semiparametric approach could also be valid for i.i.d. jump processes as in Merton (1976) or Bates (1991)
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options written on the asset. We will describe first a procedure based on the maximum
entropy principle, which has been proposed by Buchen and Kelly (1996) and by Stutzer
(1996) and contrast it with the binomial tree approach of Rubinstein (1994). Both the
former procedure, called canonical valuation by Stutzer (1996), and the latter assume that
a set of financial instruments are priced correctly and can be used to recover the asset
distribution from an expectation pricing model. As we will see, the differences between
the two approaches lie in the choice of objective function.

5.2.1. Canonical Valuation

We want to estimate the payoff distribution of the underlying asset at expiration of the
option from a set of available asset and option prices.To illustrate the method,we will take
the simplest case of one underlying asset that does not pay dividends, which will be used
to price derivative securities expiring T periods from now. Following Stutzer (1996),
we start using only returns on the underlying asset, then we will add price information
coming from options. The method involves three steps. First, starting with the current
price S and a historical time series S(t), t = −1,−2, . . . ,−H ,one can construct a rolling
historical time series of T -period gross returns:

R(−h) = S(−h)
S(−h − T )

, h = 1, 2, . . . , H − T . (5.5)

Then, the asset’s price T -periods from now is

Sh = SR(−h), h = 1, 2, . . . , H − T . (5.6)

In other words, the past realized returns are used to construct possible prices at T for
the underlying asset, each with estimated objective (actual) probability p̂(h) = 1

H−T .The
problem is to find the risk-neutral probabilities p∗,which are the closest to the empirical
probabilities p̂ in the Kullback–Leibler Information Criterion (KLIC) distance:

p̂ ∗ = arg min
p∗(h)>0

∑
h p∗(h)=1

I (p∗, p̂) =
H−T∑
h=1

p∗(h) log
p∗(h)
p̂(h)

(5.7)

and which obey the nonarbitrage economic constraint (assuming a constant interest rate):

H−T∑
h=1

R(−h)
rT

p∗(h)
p̂(h)

p̂(h) = 1. (5.8)

The solution to this problem is

p̂ ∗(h) =
exp

[
γ∗ R(−h)

rT

]
∑

h exp
[
γ∗ R(−h)

rT

] , h = 1, 2, . . . , H − T , (5.9)
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where γ∗ is found as the arg min of
∑

h exp
[
γ
(

R(−h)
rT − 1

)]
. The last step is of course

to use the p∗(h) to value say a call option with exercise price X expiring at T by

C =
∑

h

max[SR(−h)− X , 0]
rT p̂ ∗(h). (5.10)

The methodology is easily extendable to compute risk-neutral probabilities based on
more than one underlying asset. One can also ensure that a subset of derivative securities
is correctly priced at a particular date. For example, if we wanted to ensure the correct
pricing of a particular call option expiring at date T with exercise price X and market
price C, we would need to find a vector γ∗ of two elements (γ∗1 , γ∗2 ) such that

[γ∗1 , γ∗2 ] = arg min
γ

∑
h

exp
[
γ1

(
R(−h)

rT − 1
)
+ γ2

(
max[SR(−h)− X , 0]

rT − C
)]

(5.11)

These values would then be used to compute the estimated risk-neutral probabilities as

p̂ ∗(h) =
exp

[
γ∗1

(
R(−h)

rT

)
+ γ∗2

(
max[SR(−h)−X ,0]

rT

)]
∑

h exp
[
γ∗1

(
R(−h)

rT

)
+ γ∗2

(
max[SR(−h)−X ,0]

rT

)] , h = 1, 2, . . . , H − T . (5.12)

Stutzer (1996) uses this methodology to evaluate the impact of the 1987 crash on the
risk-neutral probabilities first using only S&P 500 returns. As many other papers, he
finds that the left-hand tail of the canonical distribution estimated with data including
the crash extends further than the tail of the distribution without crash data. A useful
diagnostic test is the skewness premium proposed by Bates (1991). It is the percentage
difference of the price of a call that is x percent (> 0) out-of-the-money (relative to the
current forward index value for delivery at the option’s expiration) to the price of a put
that is also x percent out-of-the-money. The canonical valuation passes this diagnostic
test for options in the 3 to 6 month range for x > 0.02 using only the historical data on
S&P 500 returns starting in 1987 and without incorporating market option prices in the
valuation process.9

5.2.2. Implied Binomial Trees

The implied binomial tree methodology proposed by Rubinstein (1994) aims also at
recovering the risk-neutral probabilities that will come closest to pricing correctly a set
of derivative securities at a given date. The idea is to start with a prior guess for the

9Gray and Norman (2005) apply canonical valuation of options in the presence of SV. Haley and Walker (2007) propose alternative tilts
(or probability distortions) based on the Cressie-Read divergence family.
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risk-neutral probabilities say p̃∗j and find the risk-neutral probabilities p∗j associated with
the binomial terminal stock price ST that are the closest to p̃∗j but price correctly an
existing set of options and the underlying stock. The risk-neutral probabilities p∗j are
solutions to the following program:

min
p∗j

∑
j

(
p∗j − p̃∗j

)2 subject to (5.13)

∑
j

p∗j = 1 and p∗j ≥ 0 for j = 0, . . . , n

Sb ≤ S ≤ Sa where S =
⎛⎝∑

j

p∗j Sj

⎞⎠/rτ

Cb
i ≤ Ci ≤ Ca

i where Ci =
⎛⎝∑

j

p∗j max[0, Sj − Ki]
⎞⎠/rτ for i = 1, . . . , m,

where j indexes the ending binomial nodes from lowest to highest, Sj is the underlying
asset prices (supposing no dividends) at the end of a standard binomial tree, Sb and Sa

are the current observed bid and ask underlying asset price, Ca
i and Cb

i are the current
observed bid and ask call option prices with striking price Ki, r is the observed annualized
riskless return, and τ is the time to expiration.

The two methods are therefore very similar, the main difference being the distance
criterion used.10 Although the maximum entropy criterion appears the best one from a
theoretical point of view,because it selects the posterior that has the highest probability of
being correct given the prior, there does not seem to be a statistical criterion behind the
quadratic distance. A goodness of fit criterion given by minp∗j

∑
j(p
∗
j − p̃∗j )2/ p̃∗j seems

more natural and is closer to the criterion used by Hansen and Jagannathan (1997) (see
Subsection 5.2.3). The goodness of fit criterion places greater weight on states with
lower probabilities. Another criterion used is to maximize smoothness by minimizing∑

j(p
∗
j−1 − 2p∗j + p∗j+1)

2, as in Jackwerth and Rubinstein (1996) to avoid the overfitting
associated with exactly pricing the options. With the smoothness criterion, there is a
trade-off between smoothing the risk-neutral distribution and explaining the option
prices. All these approaches will produce risk-neutral distributions that have much more
weight in the lower left tail than the lognormal case after the 1987 crash, but they will
distribute the probability differently in the tail.

10Cont and Tankov (2004) use a relative entropy criterion with respect to a chosen prior model to find a risk-neutral exponential Lévy
model that reproduces observed option prices.
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5.2.3. A SDF Alternative to Implied Binomial Trees

One might also measure closeness as the distance between pricing kernels and not
between risk-neutral probabilities by looking for the SDF m∗t+1 defined by

m∗i,t+1 = B(t, t + 1)
(

p∗it
pit

)
, i = 0, 1, . . . , I + 1

which is closest to a prior SDF

m̃∗i,t+1 = B(t, t + 1)
(

p̃∗it
pit

)
.

For instance, according to Hansen and Jagannathan (1997), one can choose the
L2-distance between SDFs:

Et
[
m∗t+1 − m̃∗t+1

]2 = B2(t, t + 1)
I+1∑
i=0

1
pit

(
p∗it − p̃∗it

)2. (5.14)

Therefore, the Hansen and Jagannathan (1997) measure of closeness (5.14) between SDFs
and the goodness of fit criterion between probabilities

∑I+1
i=0 (1/p̃

∗
it)

(
p∗it − p̃∗it

)2 will lead
to similar conclusions if and only if the prior risk-neutral probabilities p∗it are close to
the objective probability distribution pit . However, risk-neutral probabilities may include
agents anticipations about rare risks, which are not apparent in a historical estimation
of objective probabilities. This is the well-documented peso problem, which has been
discussed in the context of option pricing by Eraker (2004).

This discussion makes clear the potential drawback of the Euclidian distance (5.13)
between probabilities. It does not put a sufficient weight on extreme events with small
probabilities. This may lead to severe pricing errors because these small probabilities
appear at the denominator of SDFs and therefore, have a large weight in the effec-
tive computation of derivative asset prices. Almeida and Garcia (2008) generalize the
quadratic Hansen and Jagannathan (1997) measure of closeness by choosing the Cressie-
Read family of discrepancy measures. Because this family includes the KLIC and the
empirical likelihood divergence criteria, this extension makes clear the links between all
the nonparametric approaches adopted to recover risk-neutral probabilities or pricing
kernels to price options.

All of the methodologies we have described in this section are geared toward extracting
conditional risk-neutral distributions in the sense that they fit cross-sections of option
prices and in that sense have to be opposed to the unconditional approach of the previous
section. In the next section, we summarize the advantages and disadvantages of both
methods.
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5.3. Comparing the Unconditional and Conditional Methodologies for

Extracting Risk-Neutral Distributions
Because the canonical valuation or the implied tree methodologies aim at obtaining
risk-neutral probabilities that come closest to pricing correctly the existing options at a
single point in time, the risk-neutral distribution will change over time. On the contrary,
a nonparametric kernel estimator aims at estimating the risk-neutral distribution as a
fixed function of variables such as the current stock price, the exercise price, the riskless
rate, and other variables of interest. The functional form of the estimated risk-neutral
distribution should be relatively stable over time. Because we cannot really say that one
approach is better than the other, we can only sketch the advantages and disadvantages
of both methods following Aït-Sahalia and Lo (1998).

We will compare the implied binomial tree method of Rubinstein (1994) to the semi-
parametric estimate of the risk-neutral distribution of Aït-Sahalia and Lo (1998). The
first method produces a distribution that is completely consistent with all option prices
at each date, but it is not necessarily consistent across time. The second may fit poorly
for a cross-section of option prices at some date but is consistent across time. However,
being a fixed function of the relevant variables, the variation in the probabilities has to
be captured by the variation in these variables. Another consideration is the intertem-
poral dependency in the risk-neutral distributions. The first method ignores it totally,
whereas the second exploits the dependencies in the data around a given date. Implied
binomial trees are less data-intensive, whereas the kernel method requires many cross-
sections. Finally, smoothness has to be imposed for the first method, whereas the second
method delivers a smooth function by construction. The stability of the risk-neutral
distribution obtained with the kernel-based estimate should lower the out-of-sample
forecasting errors at the expense of deteriorating the in-sample fit. Aït-Sahalia and
Lo (1998) compare the out-of-sample forecasting performance of their semiparamet-
ric method with the implied tree method of Jackwerth and Rubinstein (1996) and
conclude that at short horizons (up to 5 days) the implied tree forecasting errors are
lower but that at horizons of 10 days and longer, the kernel method performance is
better.

Aït-Sahalia and Duarte (2003) proposed a nonparametric method to estimate the
risk neutral density from a cross-section of option prices. This might appear surpris-
ing given that we know that nonparametric methods require a large quantity of data.
Their nonparametric method is based on locally polynomial estimators that impose shape
restrictions on the option pricing function. From the absence of arbitrage,we know that
the price of a call option must be a decreasing and convex function of the strike price.
The method consists therefore in two steps, first a constrained least square regression
to impose monotonicity and convexity, followed by a locally polynomial kernel smoot-
hing that preserves the constraints imposed in the first step. In a Monte Carlo analysis,
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Aït-Sahalia and Duarte (2003) show these constrained nonparametric estimates are
feasible in the small samples encountered in a typical daily cross section of option
prices.

In an application to S&P 500 call option data with about 2 months to maturity on a
day in 1999, they compare several estimators (unconstrained Nadaraya–Watson, uncon-
strained locally linear, quadratic and cubic, shape-constrained locally linear) in terms of
price function, first derivative with respect to the strike price and SPD (second deriva-
tive). The comparison emphasizes that the price function is well estimated near the
money but that for high values of the strike, the locally quadratic and cubic estimators
are highly variable, whereas the unconstrained Nadaraya–Watson estimator violates the
convexity constraint on prices for low values of the strike. These poor properties show
even more in the first and the second derivatives. For the first derivative, all estima-
tors except the constrained and unconstrained locally linear violate the first derivative
constraint, whereas for the SPD (the second derivative), all the unconstrained estimators
violate the positivity constraint in the left tail of the density or are too flat at the glob-
ally optimal bandwidth. This nonparametric approach with shape restrictions appears
therefore promising, but more evidence and comparisons are needed.

In the next subsections,we will revisit these constrained and unconstrained approaches
in the SNP context. A first way to enforce the shape restrictions is to use a parametric
model for the SDF while remaining nonparametric for the historical distribution. It is
the main motivation of the Extended Method of Moments (XMM). A second strategy
is to directly fit a SNP model for the option pricing function.Then sieve estimators and
especially neural networks are well suited to take into account shape restrictions.

5.4. ExtendedMethod of Moments
The GMM was introduced by Hansen (1982) and Hansen and Singleton (1982) to
estimate a structural parameter θ identified by Euler conditions:

pi,t = Et
[
Mt,t+1(θ)pi,t+1

]
, i = 1, . . . , n, ∀t, (5.15)

where pi,t , i = 1, . . . , n, are the observed prices of n financial assets,Et denotes the expec-
tation conditional on the available information at date t, and Mt,t+1(θ) is the stochastic
discount factor. Model (5.15) is semiparametric.The GMM estimates parameter θ regard-
less of the conditional distribution of the state variables. This conditional distribution
however becomes relevant when the Euler conditions (5.15) are used for pricing deriva-
tive assets. Indeed, when the derivative payoff is written on pi,t+1 and its current price
is not observed on the market, the derivative pricing requires the joint estimation of
parameter θ and the conditional distribution of the state variables.

The XMM estimator of Gagliardini et al. (2008) extends the standard GMM to accom-
modate a more general set of moment restrictions. The standard GMM is based on
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uniform conditional moment restrictions such as (5.15), which are valid for any value of
the conditioning variables. The XMM can handle uniform moment restrictions, as well
as local moment restrictions, that are only valid for a given value of the conditioning
variables. This leads to a new field of application to derivative pricing, as the XMM can
be used for reconstructing the pricing operator on a given day, by using the information
in a cross section of observed traded derivative prices and a time series of underlying asset
returns. To illustrate the principle of XMM, consider an investor at date t0 is interested
in estimating the price ct0(h, k) of a call option with time-to-maturity h and moneyness
strike k that is currently not (actively) traded on the market. She has data on a time
series of T daily returns of the S&P 500 index, as well as on a small cross section of
current option prices ct0(hj , kj), j = 1, . . . , n, of n highly traded derivatives. The XMM
approach provides the estimated prices ĉt0(h, k) for different values of moneyness strike k
and time-to-maturity h, which interpolate the observed prices of highly traded deriva-
tives and satisfy the hypothesis of absence of arbitrage opportunities. These estimated
prices are consistent for a large number of dates T , but a fixed, even small, number of
observed derivative prices n.

We are interested in estimating the pricing operator at a given date t0, i.e., the mapping
that associates any European call option payoff ϕt0(h, k) =

(
exp Rt0,h − k

)+ with its price
ct0(h, k) at time t0, for any time-to-maturity h and any moneyness strike k.We denote by
rt the logarithmic return of the underlying asset between dates t − 1 and t.We assume that
the information available to the investors at date t is generated by the random vector Xt of
state variables with dimension d, including the return rt as the first component, and that
Xt is also observable by the econometrician.The process (Xt) on X ⊂ Rd is supposed to
be strictly stationary and Markov under the historical probability with transition density
f (xt |xt−1). Besides the cross section of option prices ct0(hj , kj), j = 1, . . . , n the available
data consist in T serial observations of the state variables Xt corresponding to the current
and previous days t = t0 − T + 1, . . . , t0. The no-arbitrage assumption implies two sets
of moment restrictions for the observed asset prices.The constraints concerning the
observed derivative prices at t0 are given by

ct0(hj , kj) = E
[
Mt,t+hj (θ)(exp Rt,hj − kj)

+|Xt = xt0
]
, j = 1, . . . , n. (5.16)

The constraints concerning the risk free asset and the underlying asset are{
E[Mt,t+1(θ)| Xt = x ] = B(t, t + 1), ∀x ∈ X ,
E[Mt,t+1(θ) exp rt+1| Xt = x ] = 1, ∀x ∈ X ,

(5.17)

respectively,where B(t, t + 1) denotes the price at time t of the short-term risk free bond.
The conditional moment restrictions (5.16) are local because they hold for a single value
of the conditioning variable only, namely the value xt0 of the state variable at time t0.
This is because we consider only observations of the derivative prices ct0(hj , kj) at date t0.
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Conversely, the prices of the underlying asset and the risk free bond are observed for
all trading days.Therefore, the conditional moment restrictions (5.17) hold for all values
of the state variables. They are called the uniform moment restrictions. The distinction
between the uniform and local moment restrictions is a consequence of the differences
between the trading activities of the underlying asset and its derivatives. Technically, it
is the essential feature of the XMM that distinguishes this method from its predecessor
GMM.

The XMM estimator presented in this section is related to the literature on the
information-based GMM (e.g., Imbens et al., 1998; Kitamura and Stutzer, 1997). It
provides estimators of both the SDF parameter θ and the historical transition density
f (y|x). By using the parameterized SDF,the information-based estimator of the historical
transition density defines the estimated SPD for pricing derivatives.

The XMM approach involves a consistent nonparametric estimator of the historical
transition density f (y|x), such as the kernel density estimator:

f̂ (y|x) = 1

hd̃
T

T∑
t=1

K̃
(

yt − y
hT

)
K
(

xt − x
hT

)/ T∑
t=1

K
(

xt − x
hT

)
, (5.18)

where K (resp. K̃ ) is the d-dimensional (resp. d̃-dimensional) kernel,hT is the bandwidth,
and (xt , yt), t = 1, . . . , T , are the historical sample data.11 Next, this kernel density
estimator is improved by selecting the conditional pdf that is the closest to f̂ (y|x) and
satisfies the moment restrictions as defined below.

The XMM estimator
(
f̂ ∗ (·|x0), f̂ ∗ (·|x1), . . . , f̂ ∗ (·|xT ), θ̂

)
consists of the functions

f0, f1, . . . , fT defined on Y ⊂ Rd̃ , and the parameter value θ that minimize the objective
function:

LT = 1
T

T∑
t=1

∫ [
f̂ (y|xt)− ft(y)

]2

f̂ (y|xt)
dy+ hd

T

∫
log

[
f0(y)

f̂ (y|x0)

]
f0(y)dy,

subject to the constraints:∫
ft(y)dy = 1, t = 1, . . . , T ,

∫
f0(y)dy = 1,∫

g
(
y; θ

)
ft(y)dy = 0, t = 1, . . . , T ,

∫
g2

(
y; θ

)
f0(y)dy = 0. (5.19)

11For expository purpose,the dates previous to t0,at which data on (X , Y ) are available,have been reindexed as t = 1, . . . , T and accordingly
the asymptotics in T correspond to a long history before t0.
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The objective function LT has two components. The first component involves the
chi-square distance between the density ft and the kernel density estimator f̂ (.|xt) at
any sample point xt , t = 1, . . . , T . The second component corresponds to the KLIC
between the density f0 and the kernel estimator f̂ (.|x0) at the given value x0. In addition
to the unit mass restrictions for the density functions, the constraints include the uniform
moment restrictions written for all sample points and the whole set of local moment
restrictions.The combination of two types of discrepancy measures is motivated by com-
putational and financial reasons. The chi-square criterion evaluated at the sample points
allows for closed form solutions f1(θ), . . . , fT (θ) for a given θ. Therefore, the objective
function can be easily concentrated with respect to functions f1, . . . , fT , which reduces
the dimension of the optimization problem.The KLIC criterion evaluated at x0 ensures
that the minimizer f0 satisfies the positivity restriction (see, e.g., Kitamura and Stutzer,
1997; Stutzer, 1996).The positivity of the associated SPD at t0 guarantees the absence of
arbitrage opportunities in the estimated derivative prices. The estimator of θ̂ minimizes
the concentrated objective function:

Lc
T (θ) =

1
T

T∑
t=1

Ê
(
g(θ)|xt

)′ V̂ (
g(θ)|xt

)−1 Ê
(
g(θ)|xt

)− hd
T log Ê

(
exp

(
λ(θ)′g2(θ)

) |x0
)
, (5.20)

where the Lagrange multiplier λ(θ) ∈ Rn+2 is such that

Ê
[
g2(θ) exp

(
λ (θ)′ g2(θ)

) |x0
] = 0, (5.21)

for all θ, and Ê
(
g(θ)|xt

)
and V̂

(
g(θ)|xt

)
denote the expectation and variance of g(Y ; θ),

respectively,w.r.t. the kernel estimator f̂ (y|xt).The first part of the concentrated objective
function (5.20) is reminiscent from the conditional version of the continuously updated
GMM (Ai and Chen, 2003;Antoine et al., 2007). The estimator of f (y|x0) is given by

f̂ ∗(y|x0) =
exp

(
λ
(
θ̂
)′

g2(y; θ̂)
)

Ê
[
exp

(
λ
(
θ̂
)′

g2(θ̂)

)
|x0

] f̂ (y|x0), y ∈ Y . (5.22)

This conditional density is used to estimate the pricing operator at time t0.
The XMM estimator of the derivative price ct0(h, k) is

ĉt0(h, k) =
∫

Mt0,t0+h(θ̂)
(
exp Rt0,h − k

)+ f̂ ∗
(
y|x0

)
dy, (5.23)
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for any time-to-maturity h ≤ h̄ and any moneyness strike k.The constraints (5.19) imply
that the estimator ĉt0(h, k) is equal to the observed option price ct0(hj , kj) when h = hj

and k = kj , j = 1, . . . , n.
The large sample properties of estimators θ̂ and ĉt0(h, k) are examined in Gagliardini

et al. (2008).These estimators are consistent and asymptotically normal for large samples
T of the time series of underlying asset returns, but a fixed number n of observed
derivative prices at t0. The linear combinations of θ that are identifiable from uniform
moment restrictions on the risk free asset and the underlying asset only are estimated at
the standard parametric rate

√
T . Any other direction η∗2 in the parameter space and the

derivative prices as well are estimated at the rate
√

Thd
T corresponding to nonparametric

estimation of conditional expectations given X = x0.The estimators of derivative prices
are (nonparametrically) asymptotically efficient.

5.5. Other SNP Estimators
In the SNP approach, the nonlinear relationship f between the price of an option π

and the various variables that affect its price, say Z , is approximated by a set of basis
functions g:

f (Z , .) =
∞∑

n=1

αngn(Z , .). (5.24)

The term SNP is explained by the fact that the basis functions are parametric, yet the
parameters are not the object of interest because we need an infinity of them to estimate
the function in the usual nonparametric sense. The methods vary according to the basis
functions chosen. Hutchinson et al. (1994) propose various types of learning networks,
Gouriéroux and Monfort (2001) consider approximations of the pricing kernel through
splines, whereas Abadir and Rockinger (1998) investigate hypergeometric functions. In
what follows,we will develop the neural network approach and see how one can choose
the basis to obtain a valid SPD function. The basis chosen for neural networks will be

gn(Z ,αn) = 1
1+ exp(−αnZ)

, (5.25)

which is a very flexible sigmoid function. Then, the function can be written as

f (Z , θ) = β0 +
d∑

i=1

βi
1

1+ exp(γi,0 − γi,1Z)
, (5.26)

where the vector of parameters θ = (β, γ) and the number d of units remains to be deter-
mined as the bandwidth in kernel methods. In neural network terminology, this is called
a single hidden-layer feedforward network. Many authors have investigated the universal
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approximation properties of neural networks (see in particular Gallant andWhite, 1988,
1992). Using a wide variety of proof strategies, all have demonstrated that under general
regularity conditions, a sufficiently complex single hidden-layer feedforward network
can approximate a large class of functions and their derivatives to any desired degree of
accuracy where the complexity of a single hidden layer feedforward network is measured
by the number of hidden units in the hidden layer. One of the requirements for this uni-
versal approximation property is that the activation function has to be a sigmoidal such
as the logistic function presented above.

One nice property of this basis function is that the derivatives can be expressed in
closed form. If we denote h(Z) = 1

1+eZ , then

h′(Z) = h(Z).(1− h(Z))

h′′(Z) = h(Z).(1− h(Z)).(1− 2h(Z)).

Therefore, once the parameters of the pricing function are estimated for a given number
of units, we can compute the hedge ratio or the risk-neutral distribution. Hutchinson
et al. (1994) show using simulations that such an approach can learn the BS formula.
To reduce the number of inputs, Hutchinson et al. (1994) divide the function and its
arguments by X and write the pricing function as a function of moneyness (S/X) and
time-to-maturity (τ):

πt

X
= f

(
St

X
, 1, τ

)
. (5.27)

Although they kept the number of units fixed, it is usually necessary as with any non-
parametric method to choose it in some optimal way. The familiar trade-off is at play.
Increasing the number of units d given a sample of data will lead to overfit the func-
tion in sample and cause a loss of predictive power out of sample. A way to choose the
number of units is to use a cross-validation type of method on a validation period as
proposed in Garcia and Gençay (2000).12 Although it is not mentioned in Hutchinson
et al. (1994), even if we estimate well the pricing function, large errors are committed
for the derivatives of the function, and most notably, negative probabilities are obtained.
This is consistent with what Aït-Sahalia and Duarte (2003) have found with local poly-
nomial estimators based on a small sample of data, except that these bad properties are
also present in large samples used for estimating the function over a long-time period.

A partial and imperfect way to better estimate the hedge ratio and the risk-neutral
distribution is to use a network that will capture the homogeneity of the pricing function
as in Garcia and Gençay (2000).The form in (5.27) assumes the homogeneity of degree

12Gençay and Qi (2001) studied the effectiveness of cross-validation, Bayesian regularization, early stopping, and bagging to mitigate
overfitting and improving generalization for pricing and hedging derivative securities.
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one in the asset price and the strike price of the pricing function f . Another technical
reason for dividing by the strike price is that the process St is nonstationary, whereas
the variable St/X is stationary as strike prices bracket the underlying asset price process.
This point is emphasized in Ghysels et al. (1996). From a theoretical point of view, the
homogeneity property is obtained under unconditional or conditional independence of
the distribution of returns from the level of the asset price (see Merton, 1973, or Garcia
and Renault, 1998b). Garcia and Gençay (2000) estimate a network of the form

Ct

X
= β0 +

d∑
i=1

β1
i h
(
γ1

i,0 + γ1
i,1

St

X
+ γ1

i,2τ

)
(5.28)

− e−ατ
d∑

i=1

β2
i h
(
γ2

i,0 + γ2
i,1

St

X
+ γ2

i,2τ

)
(5.29)

with h(Z) = (
1+ eZ

)−1. This has a similar structure than the BS formula (which is
itself homogeneous), except that the distribution function of the normal is replaced by
neural network functions.13 Garcia and Gençay (2000) show that this structure improves
the pricing performance compared to an unconstrained network, but that it does not
improve the hedging performance. In fact, this network suffers (albeit slightly less) from
the same deficiencies in terms of derivatives.To impose monotonicity and convexity on
the function and ensuring that the resulting risk-neutral distribution is a proper density
function as in Aït-Sahalia and Duarte (2003),we need to choose an appropriate structure
for the network. The following basis function proposed in Dugas et al. (2001)

ξ(Z) = log(1+ eZ ) (5.30)

is always positive and has its minimum at zero. Its first derivative

ξ′(Z) = eZ

1+ eZ = h(Z) (5.31)

is always positive and between 0 and 1 and therefore qualifies for a distribution function.
Finally, its second derivative

ξ′′(Z) = h′(Z) = h(Z).(1− h(Z)) (5.32)

is always positive, becomes 0 when h → 0 (Z →−∞) or when h → 1 (Z →+∞),
and has its maximum at h = 1/2 (Z = 0). These properties qualify for a density
function.

13This is what distinguishes this SNP approach from the semiparametric approach of Aït-Sahalia and Lo (2000), who use the BS formula
with a nonparametric estimator of volatility.
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Abadir and Rockinger (1998) with hypergeometric functions, Gottschling et al.
(2000) with neural networks, and Gouriéroux and Monfort (2001) with splines on the
log-pricing kernel are three other ways to make sure that the estimated option pricing
function always lead to a valid density, i.e., nonnegative everywhere and integrating to
one. Härdle andYatchew (2001) also use nonparametric least squares to impose a variety
of constraints on the option pricing function and its derivatives. Their estimator uses
least squares over sets of functions bounded in Sobolev norm, which offers a simple
way of imposing smoothness on derivatives. Birke and Pilz (2009) propose a completely
kernel-based estimate of the call price function,which fulfills all constraints given by the
no-arbitrage principle. Fan and Mancini (2008) propose a new nonparametric method
for pricing options based on a nonparametric correction of pricing errors induced by a
given model.

There is a need for a comparison of these methods, which impose constraints on
the estimation. Bondarenko (2003) proposes a new nonparametric method called posi-
tive convolution approximation, which chooses among a rich set of admissible (smooth
and well behaved) densities the one that provides the best fit to the option prices. He
conducts a Monte Carlo experiment to compare this method to seven other methods,
parametric and nonparametric, which recover risk-neutral densities. Daglish (2003) also
provides a comparison between parametric and nonparametric methods for American
options.

5.6. An Economic Application of Nonparametric Methods:

Extraction of Preferences
Because, in a continuum of states, the SPD or risk-neutral density corresponds to the
Arrow–Debreu prices, it contains valuable information about the preferences of the rep-
resentative investor. Indeed, the ratio of the SPD to the conditional objective probability
density is proportional to the marginal rate of substitution of the representative investor,
implying that preferences can be recovered given estimates of the SPD and the conditional
objective distribution. A measure of relative risk aversion is given by

ρt(ST ) = ST

(
f ′t (ST )

ft(ST )
− f ∗′t (ST )

f ∗t (ST )

)
, (5.33)

where ft(ST ) and f ∗t (ST ) denote, respectively, the conditional objective probability
density and the SPD. This measure assumes that ST , the value of the index at the
maturity of the option, approximates aggregate consumption, the payoff on the market
portfolio.

Several researchers have extracted risk aversion functions or preference parameters
from observed asset prices. Aït-Sahalia and Lo (2000) and Jackwerth (2000) have pro-
posed nonparametric approaches to recover risk aversion functions across wealth states
from observed stock and option prices. Rosenberg and Engle (2002),Garcia et al. (2003),
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and Bliss and Panigirtzoglou (2004) have estimated preference parameters based on
parametric asset pricing models with several specifications of the utility function.

These efforts to exploit prices of financial assets to recover fundamental economic
parameters have produced puzzling results. Aït-Sahalia and Lo (2000) find that the non-
parametrically implied function of relative risk aversion varies significantly across the
range of S&P 500 index values, from 1 to 60, and is U-shaped. Jackwerth (2000) finds
also that the implied absolute risk aversion function is U-shaped around the current
forward price but even that it can become negative. Parametric empirical estimates of
the coefficient of relative risk aversion also show considerable variation. Rosenberg and
Engle (2002) report values ranging from 2.36 to 12.55 for a power utility pricing kernel
across time, whereas Bliss and Panigirtzoglou (2004) estimate average values between
2.33 and 11.14 for the same S&P 500 index for several option maturities.14 Garcia et al.
(2003) estimate a consumption-based asset pricing model with regime-switching fun-
damentals and Epstein and Zin (1989) preferences. The estimated parameters for risk
aversion and intertemporal substitution are reasonable with average values of 0.6838 and
0.8532, respectively, over the 1991–1995 period.15

As noticed by Rosenberg and Engle (2002), the interpretation of the risk aversion
function is debatable because the estimation technique of the implied binomial tree
is based on time-aggregated data. This is the reason why Rosenberg and Engle (2002)
propose to estimate the pricing kernel as a function of contemporaneously observed asset
prices and a predicted asset payoff density based on an asymmetric GARCH model.The
price to pay for this generality is the need to refer to a parametric model for the SDF.
They propose

m∗t+1 = Et

[
mt+1

gt+1

]
= θ0t(gt+1)

−θ1t . (5.34)

The parameters of interest θ0t and θ1t are then estimated at each date t to minimize the
sum of squared pricing errors, i.e., differences between observed derivative prices (in a
cross section of derivatives all written on the same payoff gt+1) and prices computed
with the model SDF (5.34). As in the multinomial example, there is some arbitrariness
created by the choice of this particular quadratic measure of closeness. First, as discussed
in Renault (1997), one may imagine that the pricing errors are severely heteroskedastic
and mutually correlated. A GMM distance should get rid of this better than the uniform
weighting. However, as stressed by Hansen and Jagannathan (1997), the GMM distance

14Rosenberg and Engle (2002) also estimate an orthogonal polynomial pricing kernel and find that it exhibits some of the risk-aversion
characteristics noted by Jackwerth (2000), with a region of negative absolute risk aversion over the range from 4 to 2% for returns and
an increasing absolute risk aversion for returns greater than 4%.

15The authors also estimate a CCRA-expected utility model and find a similar variability of the estimates as in the related studies. The
average value is 7.2 over the 1991–1995 period with a standard deviation of 4.83.
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is probably not optimal to rank various misspecified SDFs because it gives an unfair
advantage to the most volatile SDFs.

As explained above, Hansen and Jagannathan (1997) propose to consider directly a
L2 distance between SDFs. They show that it leads to a weighting matrix for pricing
errors, which is only defined by the covariance matrix of the net returns of inter-
est and not by the product of returns with the SDF as in efficient GMM. Indeed,
Buraschi and Jackwerth (2001) observe that the δ-metric of Hansen and Jagannathan
(1997) has to be preferred to the GMM metric to select the best option pricing model
because it is model independent, whereas the optimal GMM weighting matrix is model
dependent and asymptotic chi-square, tests typically reward models that generate highly
volatile pricing errors.

Irrespective of the choice of a particular measure of closeness, the interpretation of
parameters θ0t and θ1t which have been estimated from (5.34) may be questionable,
except if a very specific model is postulated for the agent preferences. To illustrate this
point, let us consider the general family of SDFs provided by the Epstein and Zin (1989)
model of recursive utility:

mt+1 = β

[
Ct+1

Ct

]γ(ρ−1) [ Wt+1

(Wt − Ct)

]γ−1

, (5.35)

where ρ = 1− 1/σ with σ the elasticity of intertemporal substitution, γ = α/ρ, and
a = 1− α the index of comparative relative risk aversion. The variables Ct and Wt
denote, respectively, the optimal consumption and wealth paths of the representative
agent. They obey the following relationship:[

Ct

Wt

]
= [A( Jt)]1−σ,

where Vt = A( Jt) ·Wt denotes the value at time t of the maximized recursive utility
function.This value Vt is proportional to the wealth Wt available at time t for consump-
tion and investment (homothetic preferences), and the coefficient of proportionality
generally depends on the information Jt available at time t. Therefore,

mt+1 = β

[
Wt+1

Wt

]−a [A( Jt+1)

A( Jt)

]1−a [
1− A( Jt)1−σ

]γ−1. (5.36)

Let us imagine, following Rosenberg and Engle (2002), that the agent wealth is
proportional to the underlying asset payoff. Then,

m∗t+1 = Et[mt+1|gt+1] = Et[mt+1|Wt+1]
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will depend in general in a complicated way on the forecast of the value function A( Jt+1)

as a function of Wt+1. For instance, we see that

Et[log mt+1|gt+1] = B( Jt)− a log
[

Wt+1

Wt

]
+ (1− a)Et[log A( Jt+1)|Wt+1].

This illustrates that except in the particular case a = 1 (logarithmic utility) or in a case
where A( Jt+1) would not be correlated with Wt+1 given Jt , the parameter θ1t cannot
be interpreted as risk aversion parameter and is not constant insofar as conditional het-
eroskedasticity will lead to time varying regression coefficients in Et[log A( Jt+1)|Wt+1].
In other words, the intertemporal features of preferences that lead the agent to a nonmy-
opic behavior prevent one to conclude that the risk aversion parameter is time-varying
simply because one finds that the parameter θ1t is time-varying. More generally, this
analysis carries over to any missing factor in the parametric SDF model.

The general conclusion is that empirical pricing kernels that are computed without
a precise account of the state variables and enter into the value function A( Jt) cannot
provide valuable insights on intertemporal preferences. For example, Chabi-Yo et al.
(2008) show that in an economy with regime changes either in fundamentals or in
preferences, an application of the nonparametric methodology used by Jackwerth (2000)
to recover the absolute risk aversion will lead to similar negative estimates of the risk
aversion function in some states of wealth even though the risk aversion functions are
consistent with economic theory within each regime.

Of course, one can also question the representative agent framework. For example,
Bates (2007) points out that the industrial organization of the stock index options market
does not seem to be compatible with the representative agent construct and proposes
a general equilibrium model in which crash-tolerant market makers insure crash-averse
investors.

6. CONCLUSION
We have tried in this survey to offer a unifying framework to the prolific literature aimed
at extracting useful and sometimes profitable economic information from derivatives
markets.The SDF methodology is by now the central tool in finance to price assets and
provides a natural framework to integrate contributions in discrete and continuous time.
Because most models are written in continuous time in option pricing, we have estab-
lished the link between these models and the discrete time approaches trying to emphasize
the fundamental unity underlying both methodologies.To capture the empirical features
of the stock market returns, which is the main underlying empirically studied in the
option pricing literature, models have gained in complexity from the standard geomet-
ric Brownian motion of the seminal Black and Scholes (1973) model. Jump-diffusion
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models with various correlation effects have become increasingly complex to estimate.
A main difficulty is the interplay of the latent variables, which are everywhere present
in the models and the inherent complex nonlinearities of the pricing formulas. This is
the main aspect of the estimation methods on which we put some emphasis because the
estimation of continuous-time models is the object of another chapter in this Handbook.

Another major thread that underlies the survey is the interplay between preferences
and option pricing. Even though the preference-free nature of the early formulas was
often cited as a major advantage, it was not clear where this feature was coming from.We
have made a special effort to specify the statistical assumptions that are needed to obtain
this feature and to characterize the covariance or leverage effects which reintroduce
preferences. In an equilibrium framework, the role of preferences appears clearly. In
approaches based on the absence of arbitrage, these preferences are hidden in risk premia
and it is harder to account for the links they impose between the risk premia of the
numerous sources of risk. Researchers often treat these risk premia as free parameters and
manage to capture some empirical facts, but a deeper economic explanation is lacking.
The extraction of preferences from option prices using nonparametric methods is even
more problematic. The puzzles associated with this literature often come from the fact
that state variables have been omitted in the analysis.

Despite the length of the survey, there are a host of issues that we left unattended,
especially issues pertaining to the implementation of models in practice. First, it is often
difficult to obtain synchronized price data for derivatives and underlying fundamentals.
This leads researchers to use theoretical relationships such as the put-call parity theorem
to infer forward prices for the index. The same theorem is sometimes also used to infer
prices for some far in-the-money options for which the reliability of the reported price
is questionable because of staleness or illiquidity. Other types of filters such as taking out
close-to-maturity options or options with close-to-zero prices are also imposed.All these
data transformations have certainly an effect on model estimation and testing. A second
issue concerns the final objective of the modeling exercise. Is the model intended to
forecast future prices (or equivalently the moneyness and term structure of volatilities),
to compute hedge ratios (or other greeks), or to recover risk-neutral probabilities for a
certain horizon to price other derivatives on the same underlying asset?This is important
both for estimation and for testing of the model. Estimating a model according to a
statistical criterion or to a financial objective leads to different estimates and performance
in case of specification errors.Third, is the model taken at face value or do we recognize
that it is fundamentally misspecified? Often, AJD models are reestimated every day or
week, and parameters can vary considerably from one cross section to the other. Is it
better to assume some latent structure instead of letting parameters vary from one period
to the next. When agents make their financial decisions do they know the parameters
or do they have to learn them? Is parameter uncertainty important? Do they try to
make robust decisions? Finally, instead of exploiting fully specified models, are the prices
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or bounds obtained by imposing weak economic restrictions useful? A retrospective by
Bates (2003) addresses some of these issues.
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